
Time-Series and Cross-Section of Risk Premia

Expectations: A Bottom-Up Approach∗

Federico Bastianello†

May 2, 2023

(click here for latest version)

Abstract

I construct a new dataset of subjective total return expectations at the single stock

level, which I then aggregate at both market and portfolio level to construct the risk

premia expectations of sell-side analysts. Sell-side analysts’ expectations appear to be

countercyclical, contrarian and less persistent than CFOs’ expectations, have strong

and consistent correlations with many model-based expected risk premium measures

and imply a larger discount rate channel than CFOs’ and economists’ forecasts. Sell-

side analysts’ expected market risk premia forecasts are also able to predict realised

stock market risk premia. Using sell-side analysts’ excess return forecasts, CAPM

and Fama-French multi-factor models fit the cross-sectional dynamics of subjective

expected excess returns remarkably well.
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1 Introduction

In the current asset pricing literature on beliefs there has been a shift in attention from

discount rates (the central focus of rational expectations models) to cash flows as key drivers

of variations in asset prices. The reason for this shift is that while subjective cash flows

expectations have been shown to have a very important role in explaining asset prices in

financial markets, subjective discount rates expectations have not been as promising. When

proxying either cash flow expectations or return expectations, the literature has focused on

survey data from different types of economic agents: when looking at cash flow expectations

(of dividends or earnings), the literature has turned to sell-side analysts’ forecasts; when

instead looking at subjective return expectations, the literature has focused on different

groups of economic agents with significant heterogeneity in the findings.1 Within the context

of one-year subjective expectations of returns, the literature has focused mostly on survey

data from CFOs and economists.2

In this paper, by focusing on sell-side analysts’ forecasts to construct both total return

and dividend expectations, I provide a consistent dataset of beliefs for both discount rates

and cashflows. Through a bottom-up approach, I construct a new dataset of single stock

total return expectations by combining sell-side analysts’ price targets and dividend per

share forecasts. These expectations represent the natural counterparts to the cash flow

expectations that are currently widely used in the asset pricing literature and I show that

they are economically different from the expectations of CFOs. Computing total return

1Greenwood & Shleifer (2014) report procyclical individual investors’ (e.g., CFOs) return expectations.
De La O & Myers (2021) use subjective cash flow expectations provided by sell-side analysts in combination
with return forecasts from the Graham-Harvey CFO survey (Ben-David et al. (2013)) and show that the
discount rate channel is procyclical as well as of secondary importance with respect to the cash flow chan-
nel. Dahlquist & Ibert (2021) find that professional economists and asset managers provide countercyclical
forecasts. Nagel & Xu (2022) show that subjective risk premia of different market participants are acyclical
as they lack of comovement with business cycle variables and aggregate asset valuation measures.

2Many sentiment surveys of returns have been studied in the literature: the Gallup survey, the American
Association of Individual Investors Investor Sentiment Survey (AA), the Investors’ Intelligenece newsletter
expectation (II), and the Investor Behavior Project at Yale University. The focus of this paper, however,
is on surveys of one-year return expectations, hence the choice of the Livingston survey and the Graham-
Harvey survey as benchmarks. Note, the University of Michigan Survey of U.S. consumers and the Survey of
Professional Forecasters also provide data on subjective expected returns, but for a 2-3 and 10 year horizon,
and hence they are not directly comparable with sell-side analysts’ return forecasts which are constructed
at a one-year horizon.

2



expectations from sell-side analysts’ forecasts has the advantage of providing consistency

in terms of having the same agents generating forecasts for both cash flows and discount

rates. In addition, sell-side analysts’ expectations - as opposed to CFOs’ and economists’

expectations - are available at the stock level and at the same frequency as cash flows

expectations.

At the market level, I show that sell-side analysts’ forecasts are countercyclical and are

able to forecast realised future market risk premia - while CFOs’ forecasts are not. CFOs’ ex-

pected return forecasts have very low volatility - roughly, three times lower than economists’

forecasts and six times lower than sell-side analysts’ forecasts - and high persistency. A

simple AR(1) regression on CFOs’ return expectations leads to an adjusted R2 of almost

50%: CFOs’ forecasts are persistent, perhaps due to the lack of insight, and to the possible

anchoring to an historical average market return. In contrast, sell-side analysts’ aggregate

return forecasts show less persistency, which is consistent with forecasts formed by updating

beliefs as new information arrives. My results also show that analysts’ expectations imply a

larger discount rate channel relative to CFOs’ and economists’ expectations, and that they

are strongly dependent on and in line with many standard model-based expected risk pre-

mium measures, such as the price-dividend ratio (P/D), the consumption wealth ratio (cay)

of Lettau & Ludvigson (2001), and the variance risk premium of Bollerslev et al. (2009). Be-

liefs from the Livingston and IBES surveys which may capture more sophisticated investors

are contrarian, whereas those from the Graham-Harvey survey are extrapolative. Therefore,

my results suggest that it is important to consider heterogeneity in expectations in line with

theory papers of extrapolative expectations or more generally with models of asymmetric

information.3

In addition, in line with a model of slow moving beliefs about stock market volatility

(Lochstoer & Muir (2022)), I show that sell-side analysts’ market expectations are strongly

positively correlated with the square of the VIX index (VIX2). The weaker correlation

of both the leads and lags VIX2 with the sell-side analysts’ expectations, relative to the

3See Cutler et al. (1990), De Long et al. (1990), Hong & Stein (1999), Barberis et al. (2015), Glaeser
& Nathanson (2017), Barberis et al. (2018), Bordalo et al. (2019), Bastianello & Fontanier (2021), Liao
et al. (2022) for models with heterogeneous and extrapolative expectations, and Barberis (2018) for a recent
survey. For models with asymmetric information see among others Wang (1993).
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contemporaneous one, could be linked to subjective return expectations influencing the VIX2

- when investors have high/low risk premia expectations they trade in options, and affect

the VIX index contemporaneously.

Given the quality of the stock coverage provided by sell-side analyst forecasts, I also

study the cross-sectional properties of analysts’ return expectations. I construct risk-factors

and 25 book-to-market sorted portfolios using the standard methodologies of Fama & French

(1993) and Fama & French (2015). I show that the security market line (SML) - generated

by using sell-side analysts’ survey data for both dependent and independent variables when

estimating βs - is positively sloped and close to the theoretical SML - which is not the case

when the SML is constructed using realised excess returns of both the market and the test

assets. Fama & French (1993) and Fama & French (2015) find that by augmenting CAPM

with additional risk factors they are able to explain the cross-section of realised average excess

returns significantly better. In a similar spirit, adding the subjective expected risk factors

to the subjective market risk premium expectation allows to better explain the cross-section

of subjective expected excess returns.

This work is also related to the accounting and asset pricing literature focusing on price

targets as a fraction of the current price. More specifically, in the time-series my work is

related to Brav & Lehavy (2003), Asquith et al. (2005) and Bradshaw et al. (2013) who study

the co-movement of price target revisions with stock prices, their information content and

their ability to provide profitable recommendations. My work is also close to Wang (2021)

who shows that aggregate stock market price return expectations of sell-side analysts are

countercyclical. In the cross-section, my work is related to Dechow & You (2020) who study

the cross-sectional variation in target price implied returns. It is also connected to Brav et al.

(2005) and Wu (2018) who study the cross-sectional relation between subjective expected

excess returns and firm attributes. Rather than firm characteristics, my work investigates the

relationship between subjective expected excess returns and subjective risk factors. Jensen

et al. (1972), Fama & French (2004), Baker et al. (2011) and Frazzini & Pedersen (2014)

find that the empirical SML generated using realised excess returns data is at odds with the

theoretical SML. I show instead that when using subjective expectations data, the SML is

correctly sloped. Berk & van Binsbergen (2017) use mutual fund investors’ capital allocation
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decisions to infer investors’ discount rates and find that investors adjust for risk using betas

from CAPM. There is also an extensive experimental literature showing that CAPM works

well in controlled laboratory experiments (e.g., Bossaerts & Plott (2004), Bossaerts et al.

(2007), Asparouhova et al. (2020)). My results show that CAPM fits the cross-sectional

dynamics of subjective expected excess returns very well; furthermore, by extending the

subjective market risk premium with the subjective expected returns of the other Fama-

French factors, my results lead to a further improvement in explaining the subjective cross-

sectional dynamics of excess returns.

This paper proceeds as follows. In Section 2 I introduce the data and the construction

of the variables used for the analysis. Section 3 looks into the determinants of subjective

risk premia expectations. Section 4 investigates the properties of subjective risk premia

expectations from an asset pricing perspective. Section 5 provides additional results from

alternative time-series and cross-sectional tests on subjective expectations, and Section 6

concludes.

2 Data and Variables Construction

2.1 Data Description

I obtain monthly data on sell-side analysts’ median forecasts of dividend per share (DPS)

and earnings per share (EPS) from the US Unadjusted Summary Statistics of the Thomson

Reuters I/B/E/S Estimates Database (IBES going forward). This dataset covers a wide

universe of US stocks starting from 6/2002 for DPS and from 3/1976 for EPS, and it pro-

vides consensus estimates of sell-side analysts’ forecasts. The forecast horizons covered are

quarterly (fiscal quarter Q1, Q2, Q3, and Q4), semiannual, annual (fiscal year 1, 2, 3, 4) and

long-term growth (LTG).

I obtain monthly median price targets (PTG) from the IBES US Unadjusted Summary

Price Targets files. This dataset covers a wide universe of US stocks only from 03/1999.

All forecasts are for a twelve month horizon. Due to the availability of both DPS and PTG

forecasts, the sample period of the analysis starts from 06/2002.
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As already extensively argued by Bordalo et al. (2019), De La O & Myers (2021) and

Bordalo et al. (2022), sell-side analysts have a strong incentive to report their expectations

accurately. For example, the forecasts collected by Thomson Reuters from hundreds of

brokerage and independent analysts are not anonymous but labelled by the name of the

analyst or brokerage firm, which incentivizes the release of accurate forecasts. To further

ease the concern about agency conflicts and potential outliers, I use median forecasts across

analysts.

I collect sell-side analysts’ stock recommendations from the IBES US Recommendations

Summary Statistics (Consensus Recommendations) files. The dataset coverage starts in

11/1993 and it provides averages and standard deviations of analysts’ recommendations

calculated as integers based on a 5 standardized Thomson Reuters Recommendation scale.

I then rescale the scoring system from 1 (strong buy) / 5 (strong sell) to 2 / -2 to ensure

a positive (negative) score can be interpreted as positive (negative) recommendation. I use

these recommendations as proxies for expectations of future stock performance.

From Compustat, I collect data on quarterly earnings (income before extraordinary

items). From CRSP, I obtain daily stock prices, dividends, returns, data on the constituents

of the S&P500 index, cumulative share adjustment factors (CFACSHR), and cumulative

price adjustment factors (CFACPR). I obtain from CRSP the one-year Treasury yield (Rf,t)

which I use to construct the subjective risk premium (Ẽt

[
Re

t+1

]
) as:

Ẽt

[
Re

t+1

]
= Ẽt [Rt+1]−Rf,t (1)

where Ẽt [Rt+1] is the subjective one-year expected total return obtained from the surveys

considered. I define the realised one-year equity premium as the 12-month excess return of

the CRSP value-weighted index of the S&P500 universe.4

The John Graham and Campbell Harvey CFO Survey (GH) is completed quarterly by 200

to 500 CFOs of major U.S. corporations representing a broad range of industries, geographic

areas, and sizes. Among other things, they report their expectations of returns on the

S&P500 index over the next 12 months. The data is available from the third quarter of 2000

4The monthly risk-free rate is from Kenneth French’s web site.
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up to the fourth quarter of 2018.

The Livingston survey (Liv) is conducted twice a year by the Federal Reserve Bank of

Philadelphia and it provides the summary one-year expectation of stock market prices of

economists from industry, government, banking and academia, for the period spanning from

1952 to 2020. Similar to Nagel & Xu (2022), I adjust the median price growth expectation -

defined as the ratio of the median twelve-month to the median zero-month level forecasts of

the S&P500 index, for this survey - with the dividend yield and sell-side analysts’ dividend

growth expectations to obtain total return expectations:

ẼLiv,t [Rt+1] = ẼLiv,t

[
Pt+1

Pt

]
+

Dt

Pt

Ẽt

[
Dt+1

Dt

]
(2)

Note that while Adam et al. (2017) and Nagel & Xu (2022) set Ẽt

[
Dt+1

Dt

]
equal to the sample

average of S&P500 annual dividend growth, I rely on forward expectations and use survey

data from sell-side analysts to compute the expectation ẼIBES,t

[
Dt+1

Dt

]
- so that both terms

in (2) are forward looking.

I obtain CBOE data on Volatility Index from FRED, variance risk premium and forward

looking expected variance risk premium data from Hao Zhou’s website, and cay data from

Amit Goyal’s website.

When running regressions with subjective expectations as dependent variables, in the

spirit of De La O &Myers (2021) and van Binsbergen et al. (2023), I lag independent variables

to the end of the previous month relative to the consensus formation period (i.e., roughly

3 weeks before the consensus is computed each month). This ensures that the independent

variables reflect the information set available at the time the forecasts are formed.5

5As reported by Wang (2021), the median (mean) analyst issues new price targets every 16 (20) days,
and only 2% of these estimates are the same as the price targets issued previously - as also reported by
Bouchaud et al. (2019) for earnings forecasts. Hence, given that consensus forecasts are constructed on the
third Thursday of every month, by lagging the valuation ratios to the end of the previous month I am using
information that the average/median analyst holds when constructing her forecasts, while at the same time
ensuring that the valuation ratios are not outdated. Results obtained when using valuation ratios on the
day the consensus forecasts are formed do not qualitatively change (Appendix A).
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2.2 Variable Construction: One-Year Subjective Expectations

2.2.1 Fundamentals

DPS (EPS) forecasts are provided on the third week of every month for different end of

Fiscal Years (FY) or Fiscal Quarters (QTR). This is different from PTGs which are (rolling)

twelve-month horizon forecasts. Therefore, forecast revisions are not directly available for

PTGs. This implies that there are twelve-month horizon forecasts at a monthly frequency for

PTGs, unlike EPS/DPS forecasts, for which there are only twelve-month horizon forecasts

at annual frequency. Figure 1 illustrates this point by comparing EPS forecasts and price

targets to the actual EPSs and one-year ahead realised prices for Tesla. As the end of the FY

approaches, the 1YR EPS forecast moves closer to the actual realised fundamental: as the

year progresses, analysts acquire more information about the performance of the company

and their forecasts get closer to the actual realization. In order to obtain the DPS (EPS)

forecasts on a rolling window basis (just like the PTGs), I use interpolation - similar to

De La O & Myers (2021) - to construct one-year forecasts.

[Figure 1 here]

I also construct the aggregate one-year S&P500 dividend (earnings) growth expectations

by using a methodology similar to the one described in De La O & Myers (2021). Below

I describe the procedure for the aggregated dividend series, but the same methodology is

applied for the aggregate earnings series. Following De La O & Myers (2021), I define the

one-year subjective expected dollar dividend of the S&P500 in month t as:

Ẽt [Divt+1] = Ẽt

 ∑
i∈xt+1

Di,t+1Si,t+1

D̂ivisort+1

 (3)

where Si,t is the number of shares outstanding of company i at the end of the month t− 1,

Di,t is the ordinary dividend per share paid by company i at the end of month t − 1, xt is

the set of companies in S&P500 at the end of month t− 1 and D̂ivisort is the approximate

value of the divisor of the S&P500 backed out from
∑

i∈xt
Pi,tSi,t

S&P500t
(where Pi,t is the price per

share of company i at the end of month t − 1 and S&P500t is the value S&P500 index

at the end of month t − 1). I approximate subjective dividend growth expectations as
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Ẽt [∆dt+1] ≈ log
(
Ẽt

[
Divt+1

])
− log (Divt), I assume that analysts do not expect changes

in constituents or shares outstanding to affect the price-dividend ratio of the S&P500 -

E∗
t

[∑
xt+1

Di,t+1Si,t+1

̂Divisort+1

]
=

∑
xt

E∗
t [Di,t+1]Si,t

̂Divisort
-, and I deal with the missing constituents of the

S&P500 by assuming
∑

i∈xt
Ẽt [Dt+1]Si.t =

(∑
i∈xj

t
Ẽt [Dt+1]Si.t

) ∑
i∈xt

Pi,tSi,t∑
i∈x

j
t
Pi,tSi,t

, where xj
t ⊂ xt

is the set of companies within the S&P500 universe for which expectations data is available.

2.2.2 Returns

Using the one-year consensus DPS forecasts and consensus PTGs from IBES, I construct

single stock expected total returns in month t as:

Ẽt[Rt+1] =
PTGt+1 + Ẽt[DPSt+1]

Pt

(4)

where PTGt+1 = Ẽt[Pt+1] is the median consensus price target scaled by the cumulative price

adjustment factor at the time the consensus forecasts are constructed, Ẽt[DPSt+1] is the one-

year dividend per share consensus expectations scaled by the cumulative share adjustment

factor at the time the consensus forecasts are constructed, and Pt is the adjusted price at the

end of month t− 1 - similar to van Binsbergen et al. (2023) where they scale the difference

between the analysts’ forecast and the machine learning forecast by the closing stock price

from the most recent month.6 This is a new metric relative to the existing literature (e.g.,

Wu (2018)) where expected total returns are constructed using only PTGs
(
Ẽt

[
PTGt+1

Pt

])
. I

then form the aggregate S&P500 one-year expected total return (IBES RET) in month t by

value-weighting the individual expected total returns of the stocks belonging to the S&P500

universe:

Ẽt[RS&P500,t+1] =

∑
i∈xj

t
Ẽt[Ri,t+1]MEi,t∑
i∈xj

t
MEi,t

(5)

where MEi,t is the market capitalization of stock i at the end of the month t− 1.

Figure 2 illustrates the difference between the bottom-up expected return series (5) from

6Results obtained when returns are constructed by scaling price targets and dividend expectations by
the price at the time the consensus forecasts are constructed do not qualitatively change (Appendix A).
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IBES - marked in green -, the expected return series from the other surveys described in

Section 2.1 - GH Survey in red and Livingston Survey in yellow - and the one-year ahead

realised total returns - dashed blue.

[Figure 2 here]

2.2.3 Construction of Price-Dividend Ratio

To construct the price-dividend ratio, I first aggregate the regular dollar dividends of the

S&P500 constituents from CRSP on a rolling 1 year basis. This provides a time-series of

dollar dividends almost perfectly replicating the dollar dividends time-series of the S&P500

from Robert Shiller’s website, which then I normalize by the total ME of all constituents of

the S&P500:7

Dt

Pt

=

∑
i∈xt

Di,tSi,t∑
i∈xt

MEi,t

(6)

where Di,tSi,t is the total ordinary dollar dividend distributed by firm i in the S&P500 over

the last year up to time t. Through this construction the focus is on pure dividends. This

approach differs from Cochrane (1991) and Cochrane (2008) where dividends paid earlier

in the year are reinvested at a certain return to the end of the year, thus leading to the

price-dividend ratio:

Dt

Pt

=
Rt

Rx,t

− 1 =
Pt +Dt

Pt−1

Pt−1

Pt

− 1 (7)

where Rt and Rx,t are respectively the yearly total return and price return of the index. Fig-

ure 3 shows that the measure used in this paper (dashed green line) is less mean reverting

than the Cochrane’s standard measure (solid blue line). Intuitively, if dividends are rein-

vested when prices are falling, the effect on the end-of-year dividend is negative and hence

the final price-dividend ratio is higher. In contrast, when prices are increasing, and divi-

dends are re-invested, end-of-year dividends are magnified and the final price-dividend ratio

is lower. For this reason, under Cochrane’s approach, the resulting price-dividend pattern is

7Similarly, I compute the expected dividend-price ratio by dividing the expected dollar dividend of the
S&P500 in month t - described in Section 2.2.1 - by the ME of the S&P500 at the end of the month t− 1.

10



more mean-reverting than following the approach used in this paper.

[Figure 3 here]

2.3 Coverage

2.3.1 CRSP/Compustat and S&P500 Universe

A potential concern when using IBES data is the amount of coverage of the IBES universe

relative to the CRSP/Compustat universe and/or to the S&P500 constituents. To alleviate

this concern, some statistics are presented below showing that the coverage provided by

IBES is of sufficient quality.

Figure 4 illustrates the quality of the coverage provided by IBES. Although the number of

stocks seems to be relatively low, market capitalization coverage is substantial - on average,

it is above 90% for PTGs and 85% for DPS forecasts for the period of interest - which implies

that there are forecasts available for a universe of stocks which represents the majority of

the CRSP/Compustat market capitalization. Figure 4 also shows that the PTG coverage is

better than the DPS forecast coverage.8

[Figure 4 here]

When comparing the value-weighted subjective expected total return of the S&P500

with the value-weighted subjective expected price return of the S&P500, the difference

between these two time-series is remarkably similar to the dividend-price ratio (or subjective

expected dividend-price ratio) of the S&P500 as illustrated in Figure 5.9 It is reassuring

that this difference is similar to the dividend price ratio of the index, considering that the

value-weighted expected price return of the S&P500 is the aggregate expected return of the

S&P500 when all DPS forecasts are assumed to be zero (IBES RETx).

[Figure 5 here]

The overall coverage of the S&P500 provided by IBES is summarized in Figure 6. The

coverage is above 90% for ME and number of stocks, which implies that there is a sufficient

8Given that expected returns require both, I set the DPS forecast to zero when they are not present in
the dataset. Results do not qualitatively change if stock-month observations without dividend expectations
are removed from the dataset.

9I explain the how I construct the price-dividend ratio in Section 3.
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number of stocks to construct a proxy for the expected returns of the S&P500.

[Figure 6 here]

2.3.2 Fama-French Portfolios Coverage

A standard set of test assets used in the literature for cross-sectional asset pricing tests

are the Fama-French 25 portfolios double sorted by ME and book-to-market (B/M). Table

1 illustrates the time-series average quality of analysts’ coverage for these portfolios. Good

coverage is provided both in terms of number of stocks and ME for all portfolios (90%) except

for the smallest ME quintile which has the worst coverage both in terms of stocks (60%)

and ME (80%). Overall, there is enough coverage to study the subjective return properties

of cross-sectional portfolios and compare the results with the properties of portfolios based

on realised returns. To provide further evidence of the small impact of the lack of coverage,

Figure 7 illustrates the time-series of annual returns of the standard 5 Fama-French factors

when either the IBES or the full CRSP/Compustat universe is used. The difference is small,

with some minor discrepancies only for the investment factor. This means that the expected

excess returns of portfolios constructed by sorting stocks according to the Fama-French

methodology are good approximations for the total unobservable subjective expected excess

returns.

[Figure 7 and Table 1 here]

2.4 Summary Statistics of Survey Expectations

Given the stark differences in the time-series shown in Figure 2, I report in Table 2 some key

summary statistics of the subjective expected return series of the S&P500, and in Table 3 the

correlations of survey forecasts. A few observations can be easily made. First, IBES expected

returns are much higher and volatile compared to the CFOs’ and the economists’ expectated

returns. Second, CFOs’ expectations are negatively correlated with the expectations of sell-

side analysts (-0.55), whereas the economists’ expectations are positively correlated with

sell-side analysts’ expectations (0.70) - and CFOs’ and economists’ expectations are weakly

positively correlated (0.12). The implication is that there is a lot of belief heterogeneity
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which I further investigate in the next Sections.

[Tables 2 and 3 here]

3 Determinants of Subjective Risk Premia

In this Section I investigate the determinants of survey excess return expectations both over

time and in the cross section. Combining results from these two dimensions allows us to

better understand how subjective expectations are formed.

3.1 Time-series Dimension

3.1.1 Standard Tests

To study the properties of risk premia expectations over time, in the spirit of Greenwood &

Shleifer (2014) and Nagel & Xu (2022), I run regressions of the form:

Ẽt[R
e
t,t+12] = γ0 + γ1 Re

t−12,t + γ2 pdt + ϵt (8)

where Ẽt[R
e
t,t+12] is the subjective expected 12-month risk premia, and Re

t−12,t denotes the

past 12-month return of the CRSP value-weighted index of the S&P500 universe in excess

of the risk-free rate, and pdt is the log price-dividend ratio. All independent variables are

standardized to have unit standard deviations in the full sample of the regressions, which

allows comparisons across the slope coefficients. In a similar setting Greenwood & Shleifer

(2014) reach two main conclusions. First, when recent past returns are high, individual

investors expect higher returns going forward (extrapolative). Second, even after controlling

for recent returns, individual investors’ expectations of future returns are positively corre-

lated with the price-dividend ratio (procyclical). On the other hand, Nagel & Xu (2022) find

that the γ2 coefficients are significantly smaller when subjective expected returns are used

as dependent variables rather than realised returns. Table 4 shows that the GH survey is

extrapolative in nature and acyclical (positive γ1 and insignificant γ2). Livingston and IBES

expected risk premia instead are contrarian - negative γ1, hence an increase (decrease) in
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the previous 12 months excess returns is followed by a decrease (increase) in expected risk

premia - and countercyclical in nature - negative γ2, hence they are negatively related to the

price-dividend ratio, pd, which is consistent with the general prediction of RE models (e.g.,

Campbell & Cochrane (1999) and Bansal & Yaron (2004)). However, after conditioning for

both lagged returns and price-dividend ratio, GH expected risk premia only depend on past

excess returns (extrapolative) whereas IBES expected risk premia are only negatively related

to the price-dividend ratio (countercyclical). Differently from Nagel & Xu (2022), the pd

slope in the Livingston and IBES risk premia regressions (γ2, -1.88 and -2.92) are similar in

magnitude to the pd coefficients on the realised returns regressions (-4.42), whereas the GH

pd slope coefficient is an order of magnitude smaller (0.14).10

[Table 4 here]

To better understand the relationship of subjective risk premia expectations with lagged

returns, I run simple OLS regressions of subjective risk premia forecasts on lagged quar-

terly excess returns. Table 5 shows that the GH survey is extrapolative in nature - with

expectations depending more on recent return realizations than on more distant ones as

in Greenwood & Shleifer (2014). When the price-dividend ratio is added to the indepen-

dent variables, its coefficient is not statistically significant - implying CFOs’ risk premia are

acyclical as discussed in Nagel & Xu (2022). The Livingston survey is instead contrarian

and the pd coefficient is not significant after conditioning for lagged returns. Similar to the

Livingston survey and in contrast to the GH survey, IBES forecasts are contrarian: when

looking at past returns at quarterly frequency, the most recent return realizations have larger

coefficients than more distant ones. For robustness, in Section 5.3 I show that analysts’ rec-

ommendations are also contrarian. In addition, consistent with Table 4, IBES expected risk

premia show a negative and significant pd coefficient (countercyclical).

[Table 5 here]

Taken together, this first set of results suggests that recent past returns may affect

investor risk premia expectations regardless of whether the forecasters are CFOs, economists

or sell-side analysts. However, while CFOs are extrapolative in nature, economists and sell-

10In this paper, the sample periods chosen are essentially the same across all regressions, which is not
the case in Nagel & Xu (2022). Furthermore, alternative constructions of the price-dividend ratio (e.g.,
Cochrane (2008)’s methodology) can lead to different results.
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side analysts are contrarian. In addition, after adding recent past returns, the coefficient on

the pd is negative and significant only for IBES expected risk premia, implying that these

expectations are more connected to valuation ratios than the other surveys.

A final simple way of looking at the structure of the survey risk premia expectations is to

run AR regressions. Results from these regressions are reported in Table 6. When considering

the AR(1) regressions without the pd term, all surveys display some persistence, with GH

having the highest slope coefficient (0.69) and adjusted R2 (0.45), and IBES having the

smallest values (0.47 and 0.22 respectively). When looking at higher order AR regressions,

it appears that the most recent lag always has the largest slope coefficient and t-statistic

than later lags. Although some level of persistency could be consistent with the overlapping

nature of the forecasting regressions, an excessive degree of persistency could be due to

sticky expectations where forecasters are anchored to their previous observations due to lack

of insight. When adding the pd regressor (last regression in each panel of Table 6), in the GH

regression the coefficient is not significant, whereas in both the Livingston and in particular in

the IBES regressions, it is negative and strongly significant, with no significant lagged effect.

Again, IBES appears to be more connected to fundamentals than the Graham-Harvey survey.

[Table 6 here]

3.1.2 IBES Subjective Risk Premia and VIX2

Given that asset pricing theories often relate risk premium to variance, I next look at the

correlation of IBES with the square of the VIX index (VIX2) - which measures the 30-day

implied variance of S&P500 options, and it is widely used as a measure of equity market risk.

Figure 8 shows the correlation of IBES expectations with different weekly leads and lags of

the VIX and VIX2. The plots suggest that the highest correlation between the survey and the

VIX/VIX2 is the contemporaneous one (almost 80%), with the strength of the correlations

falling when the VIX/VIX2 are lagged or led.11

[Figure 8 here]

11Note that in line with the construction of the total return expectations, the time t correlation is between
IBES subjective risk premia in month t, and the VIX (VIX2) value at the end of month t-1. This ensures
that the value of VIX (VIX2) reflects the information set available at the time the forecasts are formed.
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There are two implications of these results. First, the extremely high correlation between

the VIX2 and the IBES survey is in line with a model of slow moving beliefs about stock

market volatility as developed by Lochstoer & Muir (2022). In their model, the subjective

market risk premium can be re-written as:

Ẽt[R
e
t,t+1] = A IVt +B (9)

where A and B are constants which depend on the parameter of the model, and IVt is the

implied variance at time t - which can be approximated by the VIX2. Therefore, my empirical

findings about the strong correlation between the IBES subjective beliefs and the VIX2 are

in line with models where subjective beliefs about risk play a core role in determining the

asset pricing dynamics in financial markets.

The second implication of my results is related to the tent shape pattern of the cor-

relations presented in Figure 8. The high correlation of the consensus forecast with the

contemporaneous VIX2 could imply a direction of causality in that analysts’ expectations

influence the VIX2 - rather than analysts forming their expectations based on the VIX2.

When VIX/VIX2 is added to the explanatory variables in the regressions studying the de-

terminants of IBES risk premia expectations the adjusted R2 significantly increase to more

than 70%. However, to better understand the direction of causality between IBES and VIX2,

it would be necessary to use analyst level forecast data (rather than just consensus data).

This would allow us to pin down the exact timings of the forecast releases and their impact

in options markets, which could be an interesting extension for future work. In the spirit of

Giglio et al. (2021), my results suggest how subjective expectations might impact portfolio

decisions of sophisticated investors.

Understanding the causality link between IBES and VIX2 would provide researchers not

only with a new instrumental variable useful for empirical studies involving subjective beliefs

(provided the standard exclusion restriction is satisfied), but it would also allow researchers

to use the VIX (VIX2) as a proxy of subjective expected returns of sophisticated stock market

participants, and therefore to study beliefs at much higher frequencies than only monthly,

quarterly or annually.
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3.2 Cross-sectional Beliefs

Given the time-series properties discussed in the previous Section and the excellent cross-

sectional coverage of stocks provided by IBES, the next step is to look at the cross-sectional

properties of the subjective excess return expectations. A natural questions arises: are

analysts’ forecasts cross-sectionally consistent with standard models, like CAPM and Fama-

French multi-factor models, in forming their expectations? To address this question, I run

standard Fama-French time-series regressions using survey forecasts of returns rather than

realised returns. Using firm fundamentals from Compustat, I sort stocks into portfolios using

the standard Fama & French (1993) methodology, construct the subjective expected excess

returns of the portfolios using IBES data and then run cross-sectional tests.

3.2.1 Subjective Expected Factor Returns

Figure 9 illustrates the difference between subjective expected one-year returns and future

realised one-year returns of the Fama-French factors. Noticeably, subjective expected factor

returns are positively correlated with future realised factor returns - with the exception of

the value factor - and negatively correlated with their past realizations - with the exception

of the investment factor. Overall, it would appear that subjective expected factor returns

are contrarian in nature, just like the expectations of aggregate stock market returns.

[Figure 9 here]

Given that the focus here is to understand the determinants of subjective expectations,

the question I am interested to answer now is whether a simple model such as CAPM is

able to explain the cross-sectional variation of subjective expected excess returns. The next

Section deals with this question.

3.2.2 Security Market Line under Subjective Expectations

A simple way of studying the ability of CAPM to explain the cross-sectional variation in ex-

pected asset returns, was provided by Fama & MacBeth (1973) who suggested the following

two-step procedure: a set of time-series regressions followed by a cross-sectional regression.

Many papers (e.g., Frazzini & Pedersen (2014)) have shown that CAPM faces many difficul-
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ties when tested with the data: in general, after running the first stage time-series regressions

of the Fama-MacBeth procedure, the security market line (SML) is too flat (or even nega-

tively sloped). This leads to the natural question of whether the cross-section of subjective

expected excess returns faces the same issue.

As a benchmark, I first run simple time-series regressions of excess returns of the Fama-

French 25 book-to-market sorted portfolios against the excess market return using annual

data over the sample period of interest, 2002 -2020:12

Re
i,t = α + βRe

mkt,t + ϵt (10)

Plotting the average excess returns of the test assets against the βs estimated from equation

(10) allows us to see how well CAPM fits the data: in order to provide support to the model,

the empirical SML (the line of best fit) and the theoretical SML (implied by CAPM) would

at least need to be close to each other. Figure 10 shows the results from this exercise. For

the sample period available, the empirical SML is negatively sloped which is at odds with

the CAPM prediction. Therefore, this result confirms that CAPM, by itself, struggles to

explain the cross-sectional dynamics of expected realised returns.

[Figure 10 here]

The next step is to check whether CAPM faces the same limitations when using subjective

beliefs. To this aim, I run regressions similar to (10) but now based on subjective expected

excess returns:

Ẽt

[
Re

i,t+1

]
= α̃ + β̃Ẽt

[
Re

mkt,t+1

]
+ ϵ̃t (11)

Figure 11 shows the average subjective expected excess returns against β̃s from the regression

(11). Compared to Figure 10 which displays a negatively sloped SML, Figure 11 shows an

empirical SML which is not only positively sloped but it is also very close to the theoretical

SML. As the average adjusted R2 from the regressions (11) is 62% - this will be discussed

12Subjective total returns expectations for portfolios can be constructed at a monthly frequency and
generate similar qualitative results. Note, however, that after moving past the month of June, return ex-
pectations of the Fama-French portfolios computed using price targets implicitly require that the forecasters
believe that the portfolio composition will not change in 12 months time.
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further in Section 5.2 -, I can conclude that a substantial portion of the cross-sectional

variation in subjective expected excess returns is explained by the subjective expectation of

the market excess return. Hence, these findings provide support that CAPM explains well

the cross-sectional variation of subjective expected stock returns.

[Figure 11 here]

4 Properties of Subjective Risk Premia

In this Section, I analyze the properties of the bottom-up S&P500 one-year subjective

expected total return series constructed using analysts’ forecasts (IBES 1YR RET or simply

IBES) and compare it to other subjective expectations of the S&P500 used extensively in

the literature.

4.1 Subjective Cash Flow and Discount Rate Decomposition

Following Campbell & Shiller (1988), I can write the one-year price-dividend ratio as:

pdt = κ+∆dt+1 − rt+1 + ρ pdt+1 (12)

where κ is a constant, ρ = ep̄d/(1 + ep̄d) < 1, and p̄d is the mean value of the log price-

dividend ratio. Applying subjective expectations to the above equation, changes in the price-

dividend ratio must be explained by changes in either one-year dividend growth subjective

expectations, or one-year return subjective expectations, or subjective expectations of the

future price-dividend ratio. This gives the following one-year decomposition:

1 =
cov

(
Ẽt[∆dt+1], pdt

)
var(pdt)︸ ︷︷ ︸

CF

+
−cov

(
Ẽt[rt+1], pdt

)
var(pdt)︸ ︷︷ ︸

DR

+ ρ
cov

(
Ẽt[pdt+1], pdt

)
var(pdt)︸ ︷︷ ︸

LT

(13)

where CF captures the influence of one-year subjective dividend growth expectations (‘cash

flow news’), DR captures instead the influence of one-year subjective return expectations

(‘discount rate news’) and LT captures the long-term influence of subjective dividend growth
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and return expectations. These three measures can be estimated using simple OLS. In Panel

A of Table 7 I extend the sample period of De La O &Myers (2021), and I compare them with

the results obtained by using IBES S&P500 expected returns instead of GH expectations

when estimating the DR channel.13 Two main findings should be noted. First, both the sign

and magnitude of the DR channel change significantly when IBES expected returns are used

instead of the GH survey: IBES implies an almost three times larger and countercyclical DR

channel. Second, the magnitude of the LT channel when using IBES expectations (rather

GH survey data) drops by almost 30% which implies that the impact of future subjective

cash flows and discount rates is significantly lower than previously estimated.14 It should

be noted that the tests relying on IBES forecasts - rather than on CFOs’ or economists’

forecasts - to construct subjective expectations of both cash flows and total returns are more

consistent, and hence probably more reliable, because the expectation data in this case is

always collected from the same class of economic agents.

[Table 7 here]

4.2 Model-based vs. Survey-based Expected Risk Premia

Greenwood & Shleifer (2014) report that subjective expected returns of individual investors

have inconsistent (or insignificant) correlations with model-based expected returns. In Table

8, I first confirm that CFOs’ risk premia expectations have insignificant (and inconsistent)

correlations with the price-dividend ratio (pd), the consumption wealth ratio (cay) and the

variance risk premium (VRP). IBES beliefs are strongly correlated with all of these measures

and the signs are in line with the predictions of rational expectations asset pricing models.15

[Table 8 here]

13Note that since Ẽt[pdt+1] =
1
ρ (pdt + Ẽt[rt+1]− Ẽt[∆dt+1]− κ), changing the subjective return measure

from GH to IBES will not only affect the DR channel, but also the LT one.
14Note that in Panel B of Table 7, the decomposition is obtained using semi-annual data to compare IBES

and Graham-Harvey return expectations with Livingston expectations: the results show that although when
using Livingston’s forecasts I obtain a countercyclical discount rate channel, it is smaller and less statistically
significant relative to the discount rate channel implied by IBES expectations.

15Table 8 also provides the correlations of the surveys with the expected variance risk premium (E[V RP ])
of Bollerslev et al. (2009) which is the theoretical measure that should predict risk premia in their model.
GH and Liv are uncorrelated with it, whereas the IBES is strongly correlated.

20



4.3 Subjective Risk Premia Expectations and Investment Strate-

gies

A natural follow up question is whether the predictive ability of analysts’ forecasts also

implies that these expectations provide a valuable information signal which can be exploited

in the form of a trading strategy. I rely on the Merton (1969) portfolio allocation rule -

αt =
Et[rt+1]+

1
2
σ2
r−rf

γσ2
r

- and fix the volatility (σ2
r) to isolate the effect of expected returns in the

numerator (Et[rt+1]). I build different trading strategies which rely on different measures of

Et[rt+1] when constructing αt. The strategies of interest are the ones relying on the surveys

(GH, Livingston and IBES) as proxies for Et[rt+1]. As benchmarks instead, I rely on 10-year

rolling-window forecasting models of excess returns based on pd or VRP. Figure 12 shows

the performance of the different strategies when no restrictions are placed on the value and

sign of the portfolio weights.16 The strategy relying on IBES returns is very aggressive

and levers its position in the stock market thus leading to a very good performance outside

of the financial crisis period (the green line is steeper than the other strategies except for

2008-2009 period). As shown in Panel A of Table 9, the IBES based strategy experiences

very high returns but also very high volatility. The Livingston survey also relies on leverage

(although to a lesser extent) whereas the Graham-Harvey survey does not. This is consistent

with CFOs’ expectations of returns not being volatile and being roughly constant around

5-6%, as shown in Figure 2 and Table 2. Overall, however, all survey expectations based

strategies are always long the market although to different extents. In order to appreciate

the amount of leverage implied by the survey expectations, in Panel B of Table 9 I report the

results on the performance of the trading strategies after implementing shorting and leverage

constraints. Given the constraints, the IBES and Livingston strategies are essentially always

fully invested in the stock market. However, these results should be interpreted with caution

as they rely on a simple asset allocation rule and parameterization.

[Figure 12 and Table 9 here]

16In Panel A of Table 9, I impose a high risk-aversion parameter for this unconstrained set of strategies:
this is to limit the extreme and unrealistic portfolio weights implied by the Merton (1969) portfolio allocation
rule when low values of the risk-aversion parameters are used.
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4.4 Predictability of Market Risk Premia

4.4.1 Standard In-Sample Market Risk Premia Predictability Tests

A critical property of subjective expected excess returns measures is whether they actually

forecast future market risk premia. Here I consider the relationship between expected and

realised risk premia, and I run regressions of the form:

Re
t,t+1 = α + βXt + ϵt+1 (14)

where Re
t,t+1 denotes the 12-month excess returns of the S&P500, and Xt is either a survey

risk premia expectation or the price-dividend ratio. If Xt = Ẽt[R
e
t,t+1] and investors have

rational expectations, then the coefficients α and β in equation (14) should be equal to 0

and 1 respectively. Rational expectations should subsume all information embedded in any

statistical predictor of future stock market risk premia.

Table 10 presents results from the regressions based on equation (14). This allows me

to compare the forecasting power of both GH and IBES (available at quarterly frequency),

and Livingston (which is only available at semi-annual frequency) against the benchmark

pd predictive regression. The GH survey does not forecast future risk premia. In contrast,

the pd and the other measures of expected risk premia show some degree of predictability.

Livingston and IBES both have significant β at the 1% level and have adjusted R2 (8% and

7%) which are similar in magnitude to the adjusted R2 from the benchmark pd predictive

regression (6%).

[Table 10 here]

Overall, both Livingston and IBES risk premia expectations display two very desirable

properties: first, they have significant slope coefficients and relatively high adjusted R2

compared to the GH survey; second, the sign of the β coefficients are correct, as higher

subjective expected risk premia predict higher future risk premia.

It should be noted that the IBES and Livingston surveys are limited in their risk premia

predictive ability due to their failure in forecasting the Great Financial Crisis of 2008-2009.

To help gaining insight on this issue, Figure 13 illustrates the time-series of IBES risk premia
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forecasts in conjunction with the S&P500 future realised excess returns and the VIX index.

Two features are easily seen. First, as previously discussed in Section 3, the VIX index is

strongly correlated with IBES expected risk premia (80%). In periods of distress, analysts’

risk premia expectations increase rather than decrease. Second, the limited adjusted R2

reported in Table 10 are due to the inability of subjective expectations to forecast the Great

Financial Crisis (GFC). In the year preceding the GFC, analysts’ expectations increased

whereas future realised excess returns became strongly negative due to the approaching

stock market crash. As the GFC is overall a tail-event/outlier, a natural question is whether

controlling this event changes substantially the predictive power of subjective expectations.

Table 11 answers this question and shows the results from including a dummy for the 2007-

2008 period in the risk premia predictability regressions from Table 10. By comparing the

rows in this table, we can see the impact of adding a dummy for the 2007-2008 period on

the predictability of pd and my surveys. The dummy leads to a substantial increase in all of

the adjusted R2. The Graham-Harvey survey still has an insignificant slope coefficient and

a low adjusted R2 (38%) relative to the benchmark regression on pd (45%). The Livingston

survey, on the other hand, displays a very significant slope coefficient, but also a slightly

lower adjusted R2 (41%) than the benchmark pd regression. IBES displays both a significant

slope coefficient and a slightly higher adjusted R2 (46%) than the other surveys or pd. We

can therefore conclude that alternative surveys have very different forecasting powers, and

that IBES has an edge on the GH survey.

[Figure 13 and Table 11 here]

4.4.2 Comparison of Survey Forecasts Performance

A natural question is to ask how different surveys compare in terms of forecasting perfor-

mance and whether there is some time-variation in relative performance. To answer these

questions, I rely on the unconditional test of predictive ability of Diebold & Mariano (2002)

(DM test going forward) - with the small-sample correction suggested by Harvey et al. (1997)

-, and the conditional test of predictive ability of Giacomini & White (2006) (GW test going

forward).
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Table 12 illustrates the results of the DM and GW tests when applied to IBES, GH and

Liv surveys for alternative loss functions - squared errors (SE) and proportional squared

errors (SPE) - and sample-periods - up-to Great Financial Crisis (GFC), post GFC, and

full-sample. While SE is a standard loss function, I also consider SPE because it is robust

against heteroskedasticity in the forecast errors, Taylor (2011).17 When comparing IBES

and GH, there appears to be some evidence of outperformance of the former especially in

the post GFC period; in particular, this is the case when the loss function is SPE. Overall,

sell-side analysts outperformed CFOs in the post GFC period. IBES seems to outperform

Liv only in the post GFC period. The GW test is rejected at the 10% for both SE and SPE

loss functions, whereas the DM test is rejected for the SPE loss function in the second-half

and full-sample tests. Overall the evidence suggests that IBES outperforms GH, especially in

the post GFC period. The comparison with Liv leads to somewhat weaker results although

there is some evidence of outperformance of IBES in the post GFC period.

[Table 12 here]

5 Additional Results

5.1 Forecasting Regressions of Fundamentals

Given the results from Table 10 and Table 11, I now investigate how the forecasting power

of analysts differs when looking at fundamentals rather than risk premia. To address this

issue, I run regressions of future dividend (earnings) growth on the IBES expected dividend

(earnings) growth. Table 13 reports the results. Analysts are better at forecasting dividends

than earnings (as the former are stickier). From a simple OLS predictive regression, sell-

side analysts seem to better forecast fundamentals than risk premia as the adjusted R2s on

fundamentals are substantially higher - 25%/36% in Table 13 - than the adjusted R2 on risk

premia - 8% in Table 10. However, adding an indicator function for the 2007-2008 period

leads to a significant boost in the predictability of the sell-side analysts in particular for risk

17When splitting the sample in half (or up-to the GFC and post-GFC) for the forecast errors of GH or
IBES, the Bartlett and Levene tests of homogeneity of variances reject the null with p-values smaller than
10% and 5% respectively.

24



premia such that the adjusted R2s are very similar in magnitude for both fundeamentals and

risk premia. Therefore, after controlling for the GFC, analysts exhibit similar forecasting

ability when it comes to either fundamentals or risk premia.

[Table 13 here]

5.2 Beyond CAPM and Subjective Asset Pricing Models

Given the empirical success of the SMB and HML factors - first introduced by Fama &

French (1993) - in explaining the cross-section of expected realised excess returns, one might

wonder whether extending CAPM to the classic Fama-French 3-factor model allows us to

better explain the cross-sectional dynamics of subjective excess returns better. Tables 14

and 16 provide the full results from the Fama-MacBeth first stage time-series regressions

from Section 3.2.2. The results improve when the Fama-French 3-factor model is used rather

than CAPM. Similarly, Tables 15 and 17 show the results obtained testing the Fama-French

5-factor model. These results show that, for my sample, when moving from CAPM to 3/5

Fama-French factor models, I obtain similar improvements both when using realised excess

returns (αs from the first stage drop in magnitude and the average R2 increases from 74%

to 93%) and when using survey data (R2 increases from 62% to 86%). This implies that the

cross-sectional dynamics of subjective excess returns are better explained by Fama-French

multi-factor models than by the simple CAPM. Therefore, although CAPM already provides

a good benchmark model to explain the cross-section of subjective expectations of excess

returns, a multi-factor model does a better job at capturing the full dynamics. Overall, the

evidence provides implicit support that sophisticated analysts rely on some form of multi-

factor model.

[Tables 14 through 17 here]

A final natural question is whether the finding above also implies that subjective factor

returns price the cross-section of excess realised returns, or in other words, whether the

subjective expected factor returns represent a new set of factors which can be used to price

assets in financial markets. Preliminary results show that these subjective factors do not

seem to explain well the realised cross-sectional variation of expected excess returns of my
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test assets.18 However, future research should investigate whether these factors have some

relevant explanatory power when used in conjunction with other factors.

5.3 Analysts’ Recommendations: Robustness

To provide further evidence that sell-side analysts’ beliefs are contrarian, I construct a sen-

timent metric based on analysts’ stock recommendations, SRi,t :
19

SRi,t = Et[Reci,t] (15)

where Et[Reci,t] is the consensus mean Thomson Reuters Recommendation for stock i at

time t. This metric does not require a normalization by the current price and at the same

time it represents a proxy of analysts’ expectations of the future stock market performance.

I value-weight the consensus mean stock level recommendations, SRi,t, belonging to the

S&P500 universe in a similar manner to equation (5) to construct a market level sentiment

index (SRm,t) and I run the following regression:

SRm,t = ζc + ζrR
e
t−3,t + ζpdpdt + ϵt (16)

where Re
t−3,t is the most recent quarter excess return and pdt is the log price-dividend ratio.

Results in Table 18 show that the estimate of the coefficient ζr is negative and statistically

significant - while the estimate for ζpd is not statistically significant -, thus providing further

evidence that analysts’ beliefs are contrarian in nature.

[Table 18 here]

18Appendix B shows the SMLs where the βs are obtained when realised excess returns of the Fama-
French 25 book-to-market sorted portfolios are regressed on GH or IBES subjective excess market return
expectations. The empirical SMLs are negatively sloped in both cases, and at odds with theoretical SML.
Appendix C provides further evidence of why multi-factor models based on subjective expected factor returns
do not explain the cross-section of realised excess-returns of the Fama-French 25 book-to-market sorted
portfolios.

19I thank Daniel Schmidt for suggesting this extension.

26



6 Conclusions

When running asset pricing tests, the use of subjective expectations from different surveys

can lead to stark differences in results. Given that sell-side analysts’ forecasts are used to

construct cash flow expectations, using sell-side analysts’ - as opposed to economists’ and

CFOs’ - total return expectations provides consistency in terms of having the same agents

generating forecasts for both cash flows and discount rates. By focusing on the forecasts of

sell-side analysts, through a bottom-up approach I construct the risk premia expectations

of sophisticated stock market participants. I show that these expectations display multiple

properties which differ substantially from those of CFOs. First, while sell-side analysts’

expectations appear to be contrarian, CFOs’ expectations are extrapolative: this difference

highlights the importance of considering heterogeneity in expectations, both in theoretical

and in empirical works. Second, IBES expectations have strong and consistent correlations

with many model-based expected market risk premium measures. Third, sell-side analysts

forecast risk premia better than CFOs.

When looking at the cross-sectional properties of analysts’ return expectations - with

subjective expectations as both dependent and independent variables - CAPM appears to

perform very well as the empirical SML is correctly sloped and the adjusted R2s are similar

in magnitude to those obtained by running the same tests using realised excess returns.

Adding the Fama-French factors leads to an improvement relative to CAPM in explaining the

cross-sectional dynamics of subjective expected excess returns. The improvement is similar

in magnitude to that obtained when switching from CAPM to Fama-French multi-factor

models in a setting relying on realised excess returns for both dependent and independent

variables.
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Figure 1: Tesla Forecasts. The left panel of this figure shows Tesla’s earnings per share (EPS)
consensus forecasts for the end of the current fiscal year (FY) - in blue - together with actual EPS
which was eventually reported for the current FY - in red. The right panel shows Tesla’s twelve
months horizon price targets (PTG) - in blue - and realized one year ahead prices - in red. All
measures are adjusted for the cumulative adjustment factors from CRSP to account for corporate
events such as stock splits.
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Figure 2: Time-series of S&P500 Total Return Surveys Forecasts and Realization.
The plot below shows: Graham-Harvey (GH, in red) one-year total return forecasts at quarterly
frequency - note that the GH survey stopped reporting on a continuous basis in Q4 2018; Livingston
(Liv, in yellow) one-year total return forecasts at semi-annual frequency (construction described in
Section 2.1); IBES (in green) one-year total return forecasts at quarterly frequency (construction
described in Section 2.2.2); finally, future one-year S&P500 excess total returns are reported in
dashed blue.
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Figure 3: Comparison of alternative price-dividend ratio time-series constructions.
This figure shows the log and demeaned price-dividend ratios (pd) constructed following the method-
ologies described in Section 2.2.3: the dashed blue line is formed by first aggregating the regular
dollar dividends of the S&P500 constituents from CRSP on a rolling 1 year basis and then normal-

izing by the total ME of all constituents of the S&P500: Divt
MEt

=
∑

i∈xt
Di,tSi,t∑

i∈xt
MEi,t

, where
∑

i∈xt
Di,tSi,t

is the total dollar dividend paid by all firms in the S&P500 over the last year,
∑

i∈xt
MEi,t is the

current sum of market capitalizations of all firms in the S&P500; the solid red line is constructed
using the methodology of Cochrane (1991): Dt

Pt
= Rt

Rx,t
− 1 = Pt+Dt

Pt−1

Pt−1

Pt
− 1, where Rt (Rx,t) is the

S&P500 one-year monthly compounded total (price) return.

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

−0.6

−0.4

−0.2

0.0

0.2

0.4

pd (Dividend Based)

pd (Return Based)

35



Figure 4: IBES coverage relative to CRSP-Compustat. The plots show the percentage of
stocks and market capitalization (ME) coverage of IBES forecast data for different forecast horizons
relative to CRSP-Compustat (CCM) data available in June of each calendar year between 2002
and 2020. Each line represents the percentage number of stocks (Panel A and C) or ME (Panel B
and D) for which forecast data is available for a specific forecasting period indicator (FPI) code.
Label 0 refers to LTG forecasts; Labels 1 through 5 refer to forecasts for fiscal year 1 through 5;
Labels 6 through 8 refer to forecasts for fiscal quarters 1 through 4.
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Figure 5: Difference between IBES RET and IBES RETx series. The blue line shows
the difference between IBES expected total return (IBES RET) and expected price return (IBES

RETx) for the S&P500. The green line is the expected dividend-price ratio: Ẽt[Divt+1]
MEt

, where

Ẽt[Divt+1] is the one-year subjective expected dollar dividend for the S&P500 and MEt is the
current total market capitalization of the S&P500. The red line is the dividend-price ratio of the
S&P500 constructed by first aggregating the regular dollar dividends of the S&P500 constituents
from CRSP on a rolling 1 year basis and then normalizing by the total ME of all constituents of
the S&P500: Divt

MEt
, where Divt is the total dollar dividend paid by all firms in the S&P500 over

the last year.
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Figure 6: IBES subjective return data coverage of S&P500. The blue (red) line shows
the subjective expected return data coverage provided by IBES relative to the CRSP-Compustat
universe as a percentage of ME (number of stocks).
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Figure 7: Comparison of realized yearly returns of Fama-French factors when con-
structed using the whole CRSP/Compustat universe or only the IBES universe of
stocks. The blue (red) lines represent the realised one-year Fama & French (1993) factor returns
when the CRSP/Compustat (IBES) universe is used.
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Figure 8: Correlations of IBES with VIX Panel A (B) shows the monthly correlations of
IBES subjective risk premia expectations with different lags of the VIX (VIX2) index value relative
to its end of previous month value - for example, VIXt−4 (VIX2

t−4) is the value of the VIX (VIX2)
index lagged by 4 weeks relative to the end of month value. This lead-lag structure is chosen to
reflect that IBES returns are constructed by normalizing the sell-side analysts’ forecasts by the end
of the previous month prices. Note that all correlations have p-values smaller than 0.01%.
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Figure 9: Realised and subjective expected returns of Fama-French (FF) factors. The
plots compare the time-series evolution of the IBES subjective one-year return expectations of the
FF factors (in green), their past/future realizations (blue/red), in July - after the FF portfolios
have rebalanced - of every year between 2002 and 2020. Correlations between future (past) one
year excess returns of the factors with their expectations for Mkt-Rf, SMB, HML, CMA and RMW:
0.03 (-0.32), 0.05 (-0.24), -0.15 (-0.56), 0.32 (0.61), 0.03 (-0.64).
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Figure 10: Security market line (SML) based on realized returns. The figure shows
average one-year realised excess returns (E[Re]) of the Fama-French 25 (FF25) portfolios against
their CAPM betas (β). βs are estimated by running time-series regressions of realised one-year
excess returns of each FF25 portfolio on realised one-year market excess returns (Re

i,t = αi +
βiR

e
m,t + ϵt), in July of each year between 2002 and 2020. The green line is the empirical SML and

it is the best-fit line across all the FF25 portfolios. Finally, the red line represents the theoretical
SML where the slope is the sample average excess market return and the intercept is the sample
average one-year Treasury yield.
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Figure 11: Security market line (SML) based on IBES subjective returns. The figure
shows average one-year IBES subjective expected excess returns (Ẽ[Re]) of the Fama-French 25
(FF25) portfolios against their CAPM betas (β̃). β̃s are estimated by running time-series regressions
of one-year subjective expected excess returns of each FF25 portfolio on one-year subjective market
excess returns (Ẽt[R

e
i,t+1] = α̃i+β̃iẼt[R

e
m,t+1]+ ϵ̃t), in July of each year between 2002 and 2020. The

green line is the empirical SML and it is the best-fit line across all the FF25 portfolios. Finally, the
red line represents the theoretical SML where the slope is the sample average subjective expected
excess market return and the intercept is the sample average one-year Treasury yield. All subjective
expectations in this figure are from IBES.
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Figure 12: Forecasts and Investments. The plot compares the value over time of investing $1
in Q2 2002 under alternative market-timing strategies (between the S&P500 and a Treasury bond)

based on Merton (1969) portfolio allocation rule: αt =
Et[rt+1]+

1
2
σ2
r−rf

γσ2
r

- with σr set to the log-

annual return volatility of the S&P500 between 1926-2002 (0.72%), γ set to 10 and with only the
expected return changing over time. All strategies rebalance at a semi-annual frequency and there
are no borrowing or shorting constraints. In strategy GH (in red)/Liv (in yellow)/IBES (in green),
the expectation term in αt is determined by the Graham-Harvey/Livingston/IBES expectations.
Mkt (in blue) is a strategy which always invests everything in the S&P500 (αt = 1). Rf (in dashed
blue) is a strategy which always invests everything in Treasury bonds (αt = 0). For strategy pd
(VRP), I train an OLS model to predict S&P500 future excess returns using the price-dividend
ratio (variance risk premium) in the period between Q1 1990 - Q2 2002 (which then rolls over every
rebalancing period) and use the out-of-sample forecasts of the returns as the expected returns in
αt.
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Figure 13: IBES Expected Returns, Recessions and VIX. The plot below shows: the IBES
one-year total return forecasts at monthly frequency (construction described in Section 2.2.2), in
green; the end of month VIX index (scaled by 100), in red; the NBER based Recession Indicators
in grey shaded areas; finally, a dummy period indicating the difficulty of forecasters to predict the
Great Financial Crisis is reported in the hatched yellow area. The correlations of the VIX with the
IBES, the Graham-Harvey, and the Livingston surveys are: 0.81, -0.05 and 0.82.
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Table 1: Average Fama-French (FF) 25 portfolios coverage provided by IBES relative
to CRSP-Compustat. This table shows the average coverage provided for each FF25 portfolio by
IBES relative to CRSP-Compustat between 2002 and 2020. The coverage is in terms of availability
of subjective expected returns at the portfolio level. Panel A provides the average coverage in terms
of percentage of number of stocks, and Panel B provides the average coverage in terms of market
capitalization (ME). All numbers are rounded to 1 decimal place.

Panel A
Coverage # Stocks (%) Lo BM BM2 BM3 BM4 Hi BM
Small 67.6 67.7 64.4 58.4 42.9
ME2 93.6 94.6 94.1 93.5 89.5
ME3 97.4 97.5 96.8 95.8 91.9
ME4 99.0 99.0 99.0 97.1 94.9
Big ME 99.9 99.8 99.3 99.7 97.7

Panel B
Coverage ME (%) Lo BM BM2 BM3 BM4 Hi BM
Small 82.8 83.0 80.8 77.7 69.3
ME2 94.6 95.5 94.7 93.8 90.8
ME3 97.5 97.6 97.1 95.9 91.8
ME4 99.2 99.2 99.1 97.6 94.5
Big ME 99.9 99.9 98.8 99.7 98.3

Table 2: Summary statistics of survey expectations. This table provides the average returns,
the volatility and the ratio of the two for the one-year subjective total return expectations of the
S&P500 from the Graham-Harvey (GH) survey, the Livingston (Liv) survey and the IBES survey.
The statistics for the GH survey are computed on quarterly frequency data between Q2 2002 and
Q4 2018. The statistics for the Liv survey are computed on semi-annual frequency data between
Q2 2002 and Q4 2020. The statistics for the IBES survey are computed on quarterly frequency
data between Q2 2002 and Q4 2020.

Statistic/Survey GH Liv IBES
E[R] 5.48 9.31 16.03
σ(R) 1.32 3.90 5.40

E[R]/σ(R) 4.15 2.39 2.97
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Table 3: Correlations of survey expectations. This table provides the correlations for the
one-year subjective total return expectations of the S&P500 from the Graham-Harvey (GH) survey,
the Livingston (Liv) survey and the IBES survey. The GH survey is only available up to Q4 2018
hence all correlations are based on time-series between Q2 2002 - Q4 2018. The top part of the
table reports the correlation between the GH survey and IBES survey based on quarterly data.
The rest of the table provides the correlation between all the surveys based on semi-annual data.

GH Liv IBES
Quarterly Data
IBES Survey -0.55

Semiannual Data
GH Survey 1.00
Liv Survey 0.12 1.00
IBES Survey -0.37 0.70 1.00
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Table 4: Determinants of investor expectations. This table provides the time-series regres-
sion results of survey expectations of future stock market risk premia on past 12-month returns
of the CRSP value-weighted index of the S&P500 universe, in excess of the risk-free rate (Re

t−1,t)
and log price-dividend ratio (pdt). The first three lines provide benchmark forecasting equity risk
premia regressions. GH is the subjective one-year risk premia expectation from the Graham-Harvey
survey. Liv is the subjective one-year risk premia expectation from the Livingston survey. IBES
is the subjective one-year risk premia expectation from the IBES survey. Small-sample adjusted
Newey-West standard errors with 4 quarter lags are shown in parentheses. *: 10% significance;
**: 5% significance; ***: 1% significance. Notice that forecasting regressions with persistent re-
gressors may yield biased coefficients in small samples (Stambaugh (1999)): adjusting for this does
not change the results significantly (not showed below). In the spirit of Nagel & Xu (2022), all
predictor variables are standardized to have unit variance. Slope coefficients and standard errors
are multiplied by 100 - this is to allow for an easier comparison between the βs.

Regression specification: Yt = γ0 + γ1 Re
t−1,t + γ2 pdt + ϵt

Yt γ0 γ1 γ2 Adj.R2 Sample
Re

t,t+1 11.86*** -1.37 -0.01 Q2 2002 - Q4 2020
(3.57) (2.11)

Re
t,t+1 136.02*** -4.42*** 0.06 Q2 2002 - Q4 2020

(37.16) (1.35)
Re

t,t+1 150.62** 1.08 -4.96** 0.05 Q2 2002 - Q4 2020
(68.25) (3.17) (2.53)

ẼGH,t[R
e
t,t+1] 3.71*** 0.51** 0.09 Q2 2002 - Q4 2018

(0.38) (0.21)

ẼGH,t[R
e
t,t+1] 0.08 0.14 -0.01 Q2 2002 - Q4 2018

(7.33) (0.27)

ẼGH,t[R
e
t,t+1] 7.90 0.58** -0.15 0.08 Q2 2002 - Q4 2018

(10.34) (0.29) (0.38)

ẼLiv,t[R
e
t,t+1] 9.08*** -2.66*** 0.30 Q2 2002 - Q4 2020

(0.98) (0.65)

ẼLiv,t[R
e
t,t+1] 60.88 -1.88 0.15 Q2 2002 - Q4 2020

(40.4) (1.44)

ẼLiv,t[R
e
t,t+1] 36.68 -2.22** -0.98 0.33 Q2 2002 - Q4 2020

(31.02) (0.92) (1.12)

ẼIBES,t[R
e
t,t+1] 15.94*** -2.78*** 0.23 Q2 2002 - Q4 2020

(0.80) (1.00)

ẼIBES,t[R
e
t,t+1] 97.03*** -2.92*** 0.26 Q2 2002 - Q4 2020

(22.31) (0.79)

ẼIBES,t[R
e
t,t+1] 73.23*** -1.76 -2.05** 0.32 Q2 2002 - Q4 2020

(23.71) (1.17) (0.85)
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Table 5: Risk premia expectations and quarterly lagged returns. This table provides the
time-series regression results of survey expectations of future stock market risk premia on past and
lagged quarterly returns of the CRSP value-weighted index of the S&P500 universe, in excess of the
risk-free rate (Re

t−iq) and log price-dividend ratio (pdt). GH is the subjective one-year risk premia
expectation from the Graham-Harvey survey. Liv is the subjective one-year risk premia expectation
from the Livingston survey. IBES is the subjective one-year risk premia expectation from the IBES
survey. Re

t−iq is the i quarter lagged excess returns. Small-sample adjusted Newey-West standard
errors with 4 quarter lags are shown in parentheses. *: 10% significance; **: 5% significance; ***:
1% significance. Notice that forecasting regressions with persistent regressors may yield biased
coefficients in small samples (Stambaugh (1999)): adjusting for this does not change the results
significantly (not showed below).

Regression specification: ẼSurvey,t[R
e
t,t+1] = α +

∑T
i=1 βiqR

e
t−iq + βpd pdt + ϵt

GH (2002-2018) on: α β1q β2q β3q β4q βpd Adj.R2

Re
t−1q 0.04*** 0.09*** 0.18

(0.00) (0.02)
Re

t−1q, R
e
t−2q 0.04*** 0.09*** 0.05** 0.21

(0.00) (0.03) (0.02)
Re

t−1q, R
e
t−2q, R

e
t−3q 0.04*** 0.09*** 0.04** 0.02 0.21

(0.00) (0.03) (0.02) (0.02)
Re

t−1q, R
e
t−2q, R

e
t−3q, R

e
t−4q 0.04*** 0.09*** 0.04** 0.02* -0.02 0.21

(0.00) (0.03) (0.02) (0.01) (0.02)
Re

t−1q, R
e
t−2q, R

e
t−3q, R

e
t−4q, pdt 0.12 0.10*** 0.05* 0.03* -0.01 -0.02 0.22

(0.11) (0.02) (0.03) (0.02) (0.03) (0.03)

Liv (2002-2020) on: α β1q β2q β3q β4q βpd Adj.R2

Re
t−1q 0.08*** -0.17 0.06

(0.01) (0.12)
Re

t−1q, R
e
t−2q 0.09*** -0.21*** -0.27*** 0.26

(0.01) (0.08) (0.09)
Re

t−1q, R
e
t−2q, R

e
t−3q 0.09*** -0.20** -0.29*** 0.04 0.24

(0.01) (0.10) (0.10) (0.11)
Re

t−1q, R
e
t−2q, R

e
t−3q, R

e
t−4q 0.09*** -0.21*** -0.25*** -0.02 -0.22*** 0.35

(0.01) (0.07) (0.08) (0.09) (0.08)
Re

t−1q, R
e
t−2q, R

e
t−3q, R

e
t−4q, pdt 0.39 -0.17*** -0.21** 0.02 -0.21*** -0.08 0.39

(0.24) (0.06) (0.10) (0.08) (0.08) (0.06)

IBES (2002-2020) on: α β1q β2q β3q β4q βpd Adj.R2

Re
t−1q 0.16*** -0.51*** 0.48

(0.01) (0.05)
Re

t−1q, R
e
t−2q 0.16*** -0.49*** -0.16*** 0.52

(0.01) (0.05) (0.06)
Re

t−1q, R
e
t−2q, R

e
t−3q 0.16*** -0.50*** -0.14*** -0.10* 0.53

(0.01) (0.04) (0.04) (0.06)
Re

t−1q, R
e
t−2q, R

e
t−3q, R

e
t−4q 0.16*** -0.50*** -0.15*** -0.10* -0.04 0.53

(0.01) (0.04) (0.05) (0.06) (0.06)
Re

t−1q, R
e
t−2q, R

e
t−3q, R

e
t−4q, pdt 0.59*** -0.44*** -0.08* -0.05 -0.01 -0.11** 0.58

(0.20) (0.06) (0.05) (0.06) (0.07) (0.05)
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Table 6: Persistency of risk premia expectations. This table provides the time-series re-
gression results of survey expectations of future stock market risk premia on past and lagged
subjective risk premia expectations. GH is the subjective one-year risk premia expectation from
the Graham-Harvey survey. Liv is the subjective one-year risk premia expectation from the Liv-
ingston survey. IBES is the subjective one-year risk premia expectation from the IBES survey.
ẼSurvey,t−iq[R

e
t−iq,t+1−1q] is the i quarter lagged subjective risk premia expectation of the S&P500.

Small-sample adjusted Newey-West standard errors with 4 quarter lags are shown in parentheses.
*: 10% significance; **: 5% significance; ***: 1% significance. Notice that forecasting regressions
with persistent regressors may yield biased coefficients in small samples (Stambaugh (1999)): ad-
justing for this does not change the results significantly (not showed below).

Regression specification: ẼSurvey,t[R
e
t,t+1] = α +

∑T
i=1 βiqẼSurvey,t−iq[R

e
t−iq,t+1−1q] + βpd pdt + ϵt

GH (2002-2018) on: α β1q β2q β3q β4q βpd Adj.R2

GHt−1q 0.01** 0.69*** 0.45
(0.00) (0.09)

GHt−1q, GHt−2q 0.01** 0.59*** 0.15 0.46
(0.00) (0.13) (0.13)

GHt−1q, ..., GHt−3q 0.01** 0.59*** 0.18 -0.03 0.47
(0.00) (0.13) (0.18) (0.13)

GHt−1q, ..., GHt−4q 0.01** 0.63*** 0.16 -0.05 0.00 0.47
(0.00) (0.13) (0.19) (0.10) (0.14)

GHt−1q, ..., GHt−4q, pdt 0.02 0.62*** 0.16 -0.05 0.01 -0.00 0.46
(0.05) (0.13) (0.19) (0.11) (0.14) (0.01)

Liv (2002-2020) on: α β1q β2q β3q β4q βpd Adj.R2

Livt−2q 0.03** 0.57*** 0.31
(0.01) (0.11)

Livt−2q,Livt−4q 0.03** 0.53*** 0.02 0.29
(0.01) (0.07) (0.09)

Livt−2q,Livt−4q,pdt 0.69** 0.31 0.20* -0.17** 0.54
(0.34) (0.23) (0.11) (0.08)

IBES (2002-2020) on: α β1q β2q β3q β4q βpd Adj.R2

IBESt−1q 0.08*** 0.47*** 0.22
(0.01) (0.10)

IBESt−1q,IBESt−2q 0.07*** 0.43*** 0.06 0.19
(0.01) (0.16) (0.14)

IBESt−1q,...,IBESt−3q 0.07*** 0.44*** 0.04 0.06 0.19
(0.02) (0.16) (0.16) (0.10)

IBESt−1q,...,IBESt−4q 0.06*** 0.45*** -0.00 -0.00 0.10 0.19
(0.02) (0.15) (0.14) (0.12) (0.11)

IBESt−1q,...,IBESt−4q,pdt 0.92*** 0.21 -0.06 -0.01 0.11 -0.21*** 0.38
(0.26) (0.18) (0.13) (0.12) (0.10) (0.06)
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Table 7: Variance decomposition of price-dividend ratio. This table replicates and extends
the results of De La O & Myers (2021). CF , DR and LT are defined in equation (13): CF is the
slope coefficient from the regression of subjective expected log dividend growth (Ẽt[∆dt+1]) on the
log price-dividend ratio (pdt); DR is estimated as the slope coefficient from the regression of log sub-
jective one-year returns on the log price-dividend ratio pdt; finally, LT is the slope coefficient from
the regression of subjective one-year log dividend-price ratio Ẽt[pdt+1] on the log price-dividend ratio
pdt. Subscripts GH /Liv/IBES indicate that expectations from Graham-Harvey/Livingston/IBES
are used to construct the DR or LT measures. CF has no subscript as the GH/Liv survey does not
provide dividend forecasts and hence it is implicitly assumed that the dividends cashflows are from
IBES. Note that as required by equation (13), CF+DRGH+LTGH ≈ 1, CF+DRIBES+LTIBES ≈ 1
and CF + DRLiv + LTLiv ≈ 1. Small-sample adjusted Newey-West t-statistics with bandwith of
4 are reported. Notice that forecasting regressions with persistent regressors may yield biased
coefficients in small samples (Stambaugh (1999)): adjusting for this does not change the results
significantly (not showed below).

Regressions (Q2 2002 - Q4 2018)

Channel β t(β) Adj.R2(%) σ(Xβ)(%)
CF 0.34 5.45 50.26 4.90

DRIBES 0.13 2.50 16.42 1.92
DRGH -0.05 -3.05 34.30 0.74
DRLiv 0.08 0.90 7.04 1.08
LTIBES 0.54 6.60 63.33 7.78
LTGH 0.73 11.46 80.66 10.49
LTLiv 0.63 4.59 66.94 8.78
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Table 8: Relationship between model-based measures of expected risk premium and
survey expected risk premia. This tables displays the correlations between RE measures of
expected risk premium - log price-dividend ratio (pd), consumption-wealth ratio (cay, Lettau &
Ludvigson (2001)), expected variance risk premium and realised variance risk premium (E[V RP ]
and VRP, Bollerslev et al. (2009)) - and survey expected risk premia. RE measures are lagged in
such a way to reflect the information available to the survey respondents at time they were taking
the survey. GH is the subjective one-year risk premia expectation from the Graham-Harvey survey.
Liv is the subjective one-year risk premia expectation from the Livingston survey. IBES is the
subjective one-year risk premia expectation from the IBES survey. p-values are shown in brackets
below the estimates.

GH Liv IBES
Sample (Q2 2002 - Q4 2018) (Q2 2002 - Q4 2020) (Q2 2002 - Q4 2020)

pd 0.08 -0.42*** -0.52***
(0.50) (0.01) (0.00)

cay -0.11 0.35** 0.24**
(0.37) (0.03) (0.04)

E[V RP ] -0.14 0.01 0.29**
(0.25) (0.93) (0.01)

VRP 0.07 0.38** 0.28**
(0.59) (0.02) (0.02)
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Table 9: Forecasts and Investments. The table provides summary statistics - average re-
turns, volatility, their ratio and certainty equivalent (assuming CRRA utility), all constructed from
quarterly returns - of alternative market-timing strategies (between the S&P500 and a Treasury

bond) based on Merton (1969) portfolio allocation rule: αt =
Et[rt+1]+

1
2
σ2
r−rf

γσ2
r

- with σr set to the

log-annual return volatility of the S&P500 between 1926-2002 (0.72%), different values of γ are
reported and with only the expected return changing over time. All strategies rebalance at a semi-
annual frequency. In strategy GH /Liv /IBES, the expectation term in αt is determined by the
Graham-Harvey/Livingston/IBES survey expectations. Mkt (in blue) is a strategy which always
invests everything in the S&P500 (αt = 1). Rf (in dashed blue) is a strategy which always invests
everything in Treasury bonds (αt = 0). For strategy pd (VRP), I train an OLS model to predict
S&P500 future excess returns using the price-dividend ratio (variance risk premium) in the period
between Q1 1990 - Q4 2002 (which then rolls over every rebalancing period) and use the out-of-
sample forecasts of the return as the expected return in αt. In Panel A, there are no constraints on
the strategies. In Panel B, strategies are constrained such that no shorting or leverage are allowed.

Panel A Mkt GH Liv IBES pd VRP
γ = 10
E[R] (%) 2.02 1.87 3.25 4.25 -0.24 1.25
σR (%) 7.77 4.59 11.53 17.42 3.65 2.99
E[R]/σR 0.26 0.41 0.28 0.24 -0.07 0.42
CEQ 0.99 1.01 0.97 0.89 0.99 1.01

Panel B Mkt GH Liv IBES pd VRP
γ = 2

E[R] (%) 2.02 2.24 2.25 2.25 0.72 2.27
σR (%) 7.77 7.58 7.59 7.59 5.62 5.85
E[R]/σR 0.26 0.30 0.30 0.30 0.13 0.39
CEQ 1.01 1.02 1.02 1.02 1.00 1.02
γ = 5

E[R] (%) 2.02 2.42 2.22 2.25 0.50 1.84
σR (%) 7.77 6.84 7.55 7.59 4.33 4.93
E[R]/σR 0.26 0.35 0.29 0.30 0.12 0.37
CEQ 1.00 1.01 1.01 1.01 1.00 1.01
γ = 10
E[R] (%) 2.02 1.87 2.13 2.26 0.39 1.24
σR (%) 7.77 4.59 7.06 7.57 2.80 2.96
E[R]/σR 0.26 0.41 0.30 0.30 0.14 0.42
CEQ 0.99 1.01 1.00 0.99 1.00 1.01
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Table 10: Forecasting equity risk premia. The table provides the results from forecasting
equity risk premia (Re

t,t+1) regressions. R
e
t,t+1 is the 12-month return of the CRSP value-weighted

index of the S&P500 universe, in excess of the risk-free rate. pd is the log price-dividend ratio.
GH is the subjective one-year risk premia expectation from the Graham-Harvey survey. Liv is the
subjective one-year risk premia expectation from the Livingston survey. IBES is the subjective one-
year risk premia expectation from the IBES survey. Small-sample adjusted Newey-West standard
errors with 4 quarter lags are shown in parentheses. *: 10% significance; **: 5% significance; ***:
1% significance. Notice that forecasting regressions with persistent regressors may yield biased
coefficients in small samples (Stambaugh (1999)): adjusting for this does not change the results
significantly (not showed below).

Regression specifications: Re
t,t+1 = α + βXt + ϵt+1

Xt α β Adj.R2 Sample
pdt 1.36*** -0.32*** 0.06 Q2 2002 - Q4 2020

(0.37) (0.10)
GHt 0.02 2.00 0.04 Q2 2002 - Q4 2018

(0.10) (1.88)
Livt 0.02 1.13*** 0.08 Q2 2002 - Q4 2020

(0.06) (0.41)
IBESt -0.01 0.81*** 0.07 Q2 2002 - Q4 2020

(0.05) (0.28)
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Table 11: Forecasting equity risk premia with a dummy. The table provides the results
from forecasting equity risk premia (Re

t,t+1) regressions. R
e
t,t+1 is the 12-month return of the CRSP

value-weighted index of the S&P500 universe, in excess of the risk-free rate. pd is the log price-
dividend ratio. GH is the subjective one-year risk premia expectation from the Graham-Harvey
survey. Liv is the subjective one-year risk premia expectation from the Livingston survey. IBES
is the subjective one-year risk premia expectation from the IBES survey. 12007,2008 is a dummy
equal to 1 during 2007-2008 and 0 otherwise. Small-sample adjusted Newey-West standard errors
with 4 quarter lags are shown in parentheses. *: 10% significance; **: 5% significance; ***:
1% significance. Notice that forecasting regressions with persistent regressors may yield biased
coefficients in small samples (Stambaugh (1999)): adjusting for this does not change the results
significantly (not showed below). Compared to Table 10, an additional dummy for the 2007/2008
period is added.

Regression specification: Re
t,t+1 = α + β1Xt + β212007,2008 + ϵt+1

Xt α β1 β2 Adj.R2 Sample
pdt 1.76*** -0.41*** -0.33*** 0.45 Q2 2002 - Q4 2020

(0.41) (0.11) (0.06)
GHt 0.14*** -0.13 -0.29*** 0.38 Q2 2002 - Q4 2018

(0.04) (0.83) (0.07)
Livt 0.03 1.37*** -0.29*** 0.41 Q2 2002 - Q4 2020

(0.05) (0.49) (0.05)
IBESt -0.00 1.01*** -0.33*** 0.46 Q2 2002 - Q4 2020

(0.06) (0.38) (0.06)
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Table 12: Conditional and unconditional tests of predictive ability. The table shows the
values the Diebold & Mariano (2002) - with the small-sample correction suggested by Harvey et al.
(1997) - and Giacomini & White (2006) tests for different loss-functions and sample periods - with
the corresponding p-values in parenthesis. The null hypothesis is that the two forecast models have
the same accuracy, whereas the alternative hypothesis is that they have different accuracies. F1
and F2 are the labels for the “forecasting models” being tested. GH is the subjective one-year risk
premia expectation from the Graham-Harvey survey. Liv is the subjective one-year risk premia
expectation from the Livingston survey. IBES is the subjective one-year risk premia expectation
from the IBES survey. L is the loss function of choice: SE indicates a squared error loss function
(i.e., the square of the difference between the excess return realization and the subjective excess
return forecast), and SPE indicates a squared proportional error (i.e., the square of the difference
between the excess return realization and the subjective excess return forecast scaled by subjective
excess return forecast) - useful when errors are heteroskedastic, Taylor (2011). The sign of the test-
statistics indicates which forecast performs better: a positive test-statistic indicates that model
F1 produces larger average losses than the model F2 (F2 outperforms F1), while a negative sign
indicates the opposite.

DM Test GW Test
F1 F2 L H0 : E[L(F1)− L(F2)] = 0 H0 : E[L(F1)− L(F2)] = 0 Sample Frequency

HA : E[L(F1)− L(F2)] ̸= 0 HA : E[L(F1)− L(F2)] ̸= 0

SE 0.44 (0.66) 3.43 (0.18) Q2 2002 - Q2 2009
SE -2.40** (0.02) -4.85* (0.09) Q3 2009 - Q4 2018
SE -0.27 (0.79) -1.01 (0.60) Q2 2002 - Q4 2018

IBES GH Quarterly
SPE -2.28** (0.03) -5.30* (0.07) Q2 2002 - Q2 2009
SPE -4.27*** (0.00) -11.76*** (0.00) Q3 2009 - Q4 2018
SPE -2.21** (0.03) -5.77* (0.06) Q2 2002 - Q4 2018
SE 1.54 (0.15) 2.25 (0.33) Q2 2002 - Q2 2009
SE -1.63 (0.12) -5.51* (0.06) Q3 2009 - Q4 2018
SE 0.49 (0.62) 0.28 (0.87) Q2 2002 - Q4 2018

IBES Liv Semi-annual
SPE -1.39 (0.19) -2.74 (0.25) Q2 2002 - Q2 2009
SPE -2.16** (0.04) -4.87* (0.09) Q3 2009 - Q4 2018
SPE -1.77* (0.09) -3.13 (0.21) Q2 2002 - Q4 2018
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Table 13: Cashflow predictability regressions with IBES forecasts. Dependent variable
is next year S&P500 log dividend (earnings) growth; independent variables are current one-year
forecasts of SP500 dividend (earnings) growths and a dummy for the 2007/2008 period, as also used
in Table 11. Small-sample adjusted Newey-West standard errors with 4 quarter lags are shown in
parentheses. *: 10% significance; **: 5% significance; ***: 1% significance. Notice that forecasting
regressions with persistent regressors may yield biased coefficients in small samples (Stambaugh
(1999)): adjusting for this does not change the results significantly (not showed below).

Regression specification: ∆dt,t+1 = α + β1Ẽt[∆dt,t+1] + β212007,2008 + ϵt+1

Dividend growth (2002 - 2020) α β1 β2 Adj.R2

∆dt,t+1 vs Ẽt[∆dt,t+1] -0.01 0.76*** 0.36
(0.03) (0.23)

∆dt,t+1 vs Ẽt[∆dt,t+1] + 12007,2008 0.01 0.76*** -0.13*** 0.57
(0.02) (0.23) (0.05)

Regression specifications: ∆et,t+1 = α + β1Ẽt[∆et,t+1] + β212007,2008 + ϵt+1

Earnings growth (2002 - 2020) α β1 β2 Adj.R2

∆et,t+1 vs Ẽt[∆et,t+1] 0.02 0.93*** 0.25
(0.06) (0.17)

∆et,t+1 vs Ẽt[∆et,t+1] + 12007,2008 0.09*** 0.86*** -0.60*** 0.49
(0.03) (0.17) (0.16)
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Table 14: Time-series regressions of 25 Fama-French portfolios excess returns on the
excess market return (CAPM) or on the Fama-French 3-factors (FF3). The regressions
results reported in this table are based on annual excess returns in July of each year between
2002 and 2020. Panel A reports results from the CAPM specification: Re

i,t = α + βmktR
e
mkt,t + ϵt

with average adj.R2 of portfolios 74%. Panel B reports results from the FF3 specification: Re
i,t =

α+ βmktR
e
mkt,t + βsmbSMBt + βhmlHMLt + ϵt with average adj.R2 of portfolios 91%.

Panel A
Lo BM BM2 BM3 BM4 Hi BM Lo BM BM2 BM3 BM4 Hi BM

α t(α)
Small -5.29 -0.18 -1.06 1.21 -0.08 -1.82 -0.10 -0.33 0.29 -0.02
ME2 -0.01 1.32 1.28 0.74 -2.45 -0.00 0.85 0.60 0.25 -0.58
ME3 -0.29 2.02 2.64 1.46 -2.87 -0.18 1.31 1.03 0.49 -0.78
ME4 1.77 2.78 0.05 -0.51 -4.76 1.54 1.74 0.02 -0.20 -1.38

Big ME 2.24 0.79 0.14 -6.10 -3.97 1.27 0.94 0.12 -2.06 -1.36
βmkt t(βmkt)
Small 1.30 1.11 1.08 1.01 1.21 6.66 11.46 7.20 4.40 5.20
ME2 1.14 1.08 1.06 0.94 1.09 8.34 12.74 11.05 7.54 4.80
ME3 1.23 1.14 0.95 1.06 1.19 10.55 9.98 7.36 6.59 8.22
ME4 1.18 1.06 1.11 1.07 1.51 15.55 9.75 6.91 9.42 7.46

Big ME 0.87 0.89 0.94 1.22 1.11 11.32 19.14 11.61 7.64 4.96
Adj.R2 s(e)
Small 0.69 0.8 0.64 0.50 0.55 12.85 8.34 11.89 14.6 16.10
ME2 0.84 0.83 0.78 0.63 0.55 7.52 7.29 8.25 10.49 14.28
ME3 0.86 0.88 0.71 0.71 0.59 7.36 6.39 8.92 10.10 14.51
ME4 0.93 0.87 0.76 0.69 0.67 4.93 6.12 9.33 10.50 15.54

Big ME 0.78 0.91 0.90 0.79 0.59 6.88 4.29 4.73 9.36 13.62

Panel B
Lo BM BM2 BM3 BM4 Hi BM Lo BM BM2 BM3 BM4 Hi BM

α t(α)
Small -9.87 -2.22 -2.82 0.42 -0.46 -4.87 -1.36 -2.66 0.37 -0.40
ME2 -2.70 -0.36 1.04 0.57 -2.02 -1.88 -0.33 0.86 0.43 -2.73
ME3 -3.40 1.46 2.93 1.70 -2.27 -2.80 1.24 1.7 1.13 -1.01
ME4 0.58 2.48 0.79 1.15 -2.42 0.57 2.08 0.43 1.05 -1.53

Big ME 0.73 2.01 0.57 -2.59 -1.31 1.22 3.00 0.48 -1.82 -0.40
βmkt t(βmkt)
Small 1.37 1.12 1.06 0.95 1.14 7.23 9.66 13.25 9.92 10.99
ME2 1.19 1.08 1.02 0.89 1.01 11.54 18.51 13.93 13.92 21.52
ME3 1.28 1.13 0.91 1.01 1.12 33.71 14.01 9.49 13.80 8.67
ME4 1.21 1.04 1.06 1.00 1.39 23.98 12.50 11.54 11.06 10.48

Big ME 0.93 0.87 0.92 1.14 1.04 19.97 18.03 12.33 14.08 4.16
βsmb t(βsmb)
Small 1.38 0.88 1.31 1.26 1.27 3.52 3.12 7.97 5.53 6.23
ME2 0.75 0.85 0.61 0.78 0.94 3.98 6.94 4.35 4.81 8.82
ME3 0.89 0.49 0.45 0.63 0.82 5.80 3.13 1.90 4.12 3.47
ME4 0.21 0.39 0.37 0.20 0.38 1.41 1.75 1.52 1.33 1.32

Big ME 0.00 -0.34 0.04 -0.67 -0.43 0.01 -2.58 0.18 -4.10 -0.85
βhml t(βhml)
Small -0.81 -0.20 0.15 0.47 0.62 -3.45 -0.97 1.47 3.82 3.88
ME2 -0.51 -0.10 0.28 0.41 0.71 -4.72 -0.97 2.63 3.92 8.96
ME3 -0.58 0.09 0.37 0.46 0.70 -5.48 0.76 2.33 3.93 6.45
ME4 -0.30 0.13 0.49 0.72 1.06 -3.65 1.10 3.15 6.72 5.21

Big ME -0.54 0.23 0.17 0.85 0.70 -7.13 3.29 1.32 7.34 2.27
Adj.R2 s(e)
Small 0.82 0.88 0.96 0.93 0.94 9.89 6.50 4.10 5.45 5.74
ME2 0.90 0.93 0.93 0.93 0.97 5.84 4.57 4.56 4.56 3.85
ME3 0.95 0.93 0.87 0.94 0.90 4.59 4.90 6.04 4.71 7.15
ME4 0.94 0.92 0.91 0.92 0.93 4.34 4.89 5.73 5.32 6.90

Big ME 0.95 0.92 0.91 0.93 0.64 3.25 3.82 4.48 5.55 12.73

57



Table 15: Time-series regressions of the 25 Fama-French portfolios excess returns on
the Fama-French 5-factors (FF5). The regressions results reported in this table are based on
annual excess returns in July of each year between 2002 and 2020. Results are based on the FF5
specification: Re

i,t = α + βmktR
e
mkt,t + βsmbSMBt + βhmlHMLt + βcmaCMAt + βrmwRMWt + ϵt

with average adj.R2 of portfolios 93%.

Lo BM BM2 BM3 BM4 Hi BM Lo BM BM2 BM3 BM4 Hi BM
α t(α)

Small -3.90 0.76 -1.61 -0.08 -0.28 -1.79 0.40 -1.46 -0.04 -0.13
ME2 -0.00 0.18 1.93 -0.20 -3.44 -0.00 0.12 1.18 -0.12 -2.62
ME3 -2.55 -0.17 1.42 0.82 -2.80 -1.50 -0.10 0.64 0.49 -1.05
ME4 0.71 0.50 -0.28 -0.29 -0.35 0.46 0.30 -0.13 -0.15 -0.15

Big ME 0.14 -0.02 0.14 -3.49 4.97 0.12 -0.02 0.10 -1.75 1.68
βmkt t(βmkt)
Small 0.98 0.93 0.96 0.97 1.13 7.89 8.52 15.32 8.27 8.99
ME2 1.01 1.03 0.96 0.92 1.10 11.44 11.98 10.2 9.65 14.56
ME3 1.22 1.23 0.99 1.07 1.13 12.53 12.53 7.78 11.17 7.40
ME4 1.19 1.16 1.11 1.08 1.25 13.46 12.18 9.21 9.64 9.17

Big ME 0.96 1.00 0.96 1.20 0.61 14.13 16.36 11.86 10.51 3.60
βsmb t(βsmb)
Small 1.58 0.99 1.41 1.30 1.24 6.40 4.61 11.36 5.59 4.99
ME2 0.87 0.93 0.66 0.82 0.9 5.01 5.48 3.56 4.31 6.08
ME3 0.93 0.44 0.46 0.57 0.87 4.81 2.29 1.81 3.00 2.89
ME4 0.27 0.36 0.40 0.19 0.46 1.53 1.93 1.68 0.87 1.72

Big ME 0.03 -0.40 -0.05 -0.74 -0.13 0.20 -3.33 -0.34 -3.28 -0.40
βhml t(βhml)
Small -0.49 -0.03 0.30 0.51 0.59 -2.73 -0.16 3.33 3.03 3.26
ME2 -0.32 0.02 0.35 0.44 0.65 -2.56 0.17 2.63 3.21 6.03
ME3 -0.52 0.02 0.36 0.37 0.77 -3.75 0.12 1.99 2.70 3.53
ME4 -0.22 0.07 0.52 0.69 1.20 -1.72 0.50 3.00 4.27 6.11

Big ME -0.51 0.13 0.05 0.75 1.16 -5.27 1.53 0.41 4.59 4.77
βcma t(βcma)
Small -0.48 -0.30 -0.39 -0.20 0.13 -1.87 -1.34 -2.97 -0.82 0.52
ME2 -0.39 -0.36 -0.19 -0.21 0.07 -2.11 -2.04 -0.95 -1.07 0.43
ME3 -0.12 0.08 -0.15 0.22 -0.32 -0.61 0.39 -0.57 1.12 -1.00
ME4 -0.28 -0.02 -0.24 -0.05 -0.26 -1.51 -0.09 -0.95 -0.23 -0.90

Big ME -0.16 0.13 0.40 0.26 -0.95 -1.16 1.02 2.37 1.09 -2.70
βrmw t(βrmw)
Small -0.86 -0.41 -0.09 0.15 -0.07 -3.45 -1.88 -0.68 0.62 -0.28
ME2 -0.34 0.02 -0.09 0.20 0.22 -1.92 0.12 -0.50 1.02 1.46
ME3 -0.11 0.25 0.30 0.08 0.19 -0.55 1.27 1.18 0.42 0.61
ME4 0.06 0.34 0.25 0.26 -0.27 0.36 1.79 1.05 1.16 -0.99

Big ME 0.15 0.3 -0.05 0.07 -0.77 1.11 2.49 -0.32 0.31 -2.27
Adj.R2 s(e)
Small 0.93 0.92 0.98 0.92 0.93 6.03 5.27 3.04 5.69 6.10
ME2 0.95 0.94 0.93 0.93 0.97 4.26 4.16 4.55 4.64 3.65
ME3 0.94 0.93 0.86 0.94 0.89 4.71 4.76 6.17 4.65 7.40
ME4 0.95 0.93 0.9 0.92 0.94 4.28 4.60 5.85 5.42 6.62

Big ME 0.95 0.96 0.93 0.93 0.85 3.27 2.95 3.94 5.54 8.20
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Table 16: Time-series regressions of the 25 Fama-French portfolios subjective expected
excess returns on the subjective expected excess market return (CAPM) or on the
subjective expected returns of the Fama-French 3-factors (FF3). Regressions are based on
annual subjective excess returns in July of each year between 2002 and 2020. Panel A reports results
from the CAPM specification: Ẽt[R

e
i,t+1] = α̃+β̃mktẼt[R

e
mkt,t+1]+ϵ̃t with average adj.R2 of portfolios

62%; Panel B reports results from the FF3 specification: Ẽt[R
e
i,t+1] = α̃ + β̃mktẼt[R

e
mkt,t+1] +

β̃smbẼt[SMBt+1] + β̃hmlẼt[HMLt+1] + ϵ̃t with average adj.R2 of portfolios 82%.

Panel A
Lo BM BM2 BM3 BM4 Hi BM Lo BM BM2 BM3 BM4 Hi BM

α̃ t(α̃)
Small 27.25 27.07 9.93 7.88 -1.65 1.78 2.29 1.07 1.54 -0.12
ME2 9.68 3.66 0.41 -0.62 1.00 2.39 1.33 0.23 -0.35 0.32
ME3 0.24 0.47 -0.61 -0.70 -5.66 0.10 0.44 -0.42 -0.32 -1.37
ME4 -7.28 -1.58 -4.58 1.80 -0.73 -0.90 -1.55 -1.28 0.78 -0.14

Big ME 1.44 1.08 2.79 -1.39 -3.73 1.20 1.11 1.24 -0.41 -1.05

β̃mkt t(β̃mkt)
Small 1.64 0.75 1.45 1.11 1.99 1.68 1.36 2.91 4.92 1.91
ME2 0.81 0.91 1.00 0.99 0.89 3.38 7.39 13.55 11.93 6.69
ME3 1.02 0.89 0.92 0.97 1.34 5.92 14.86 15.07 10.38 5.08
ME4 1.63 0.93 1.32 0.76 1.05 2.13 15.34 4.99 7.28 2.96

Big ME 0.86 0.89 0.80 1.12 1.42 13.35 13.10 5.17 4.26 6.08
Adj.R2 s(e)
Small 0.18 0.03 0.35 0.46 0.34 20.21 16.36 12.17 7.53 17.18
ME2 0.37 0.66 0.8 0.81 0.62 6.55 4.20 3.27 3.07 4.45
ME3 0.79 0.9 0.87 0.78 0.65 3.36 1.97 2.31 3.26 6.32
ME4 0.13 0.94 0.68 0.66 0.44 22.98 1.54 5.74 3.44 7.36

Big ME 0.88 0.91 0.71 0.66 0.78 2.09 1.85 3.30 5.16 4.79

Panel B
Lo BM BM2 BM3 BM4 Hi BM Lo BM BM2 BM3 BM4 Hi BM

α̃ t(α̃)
Small 16.94 24.35 9.65 11.88 -9.24 3.02 2.80 2.84 2.46 -1.21
ME2 5.76 3.4 -0.32 1.57 4.16 2.16 1.23 -0.12 0.81 1.59
ME3 -4.19 -0.57 -0.8 -0.15 -3.34 -6.70 -0.50 -0.46 -0.07 -2.00
ME4 -11.08 -1.68 1.09 2.23 0.96 -1.10 -1.45 0.52 0.92 0.50

Big ME -1.03 1.98 6.06 6.55 0.17 -1.08 2.16 2.31 1.74 0.11

β̃mkt t(β̃mkt)
Small 1.07 0.16 0.90 0.70 1.48 4.30 0.41 5.23 2.81 4.19
ME2 0.68 0.76 0.93 0.82 0.63 5.01 5.10 6.94 9.89 4.05
ME3 1.04 0.86 0.87 0.86 0.99 21.50 18.66 10.15 7.59 16.25
ME4 1.83 0.93 1.09 0.67 0.70 1.97 16.19 7.12 6.72 6.68

Big ME 0.98 0.90 0.73 0.91 1.14 18.18 15.15 4.18 4.71 11.17

β̃smb t(β̃smb)
Small 3.74 2.60 2.11 0.89 3.10 12.35 4.50 11.46 2.53 5.52
ME2 1.11 0.62 0.39 0.27 0.44 7.24 3.12 2.79 2.35 2.03
ME3 0.63 0.28 0.22 0.30 0.92 12.57 4.96 2.25 2.63 7.77
ME4 -0.12 -0.02 -0.04 0.26 1.03 -0.28 -0.19 -0.23 3.69 4.69

Big ME -0.04 -0.18 -0.23 -0.48 0.44 -0.79 -3.54 -2.07 -2.57 3.71

β̃hml t(β̃hml)
Small 0.40 0.98 1.10 1.11 0.49 0.72 1.86 4.79 4.53 1.11
ME2 -0.02 0.29 0.10 0.49 0.73 -0.07 1.57 0.44 3.38 5.21
ME3 -0.35 -0.01 0.09 0.25 0.86 -4.82 -0.12 0.64 1.02 4.42
ME4 -0.66 -0.03 0.87 0.21 0.82 -1.03 -0.28 2.48 0.85 2.47

Big ME -0.41 0.05 0.39 0.99 0.85 -5.18 0.55 1.52 3.64 4.34
Adj.R2 s(e)
Small 0.86 0.67 0.92 0.80 0.87 8.36 9.57 4.19 4.58 7.74
ME2 0.78 0.85 0.86 0.90 0.84 3.87 2.75 2.74 2.22 2.92
ME3 0.98 0.94 0.89 0.83 0.93 1.15 1.51 2.11 2.89 2.86
ME4 0.03 0.93 0.74 0.69 0.8 24.33 1.64 5.23 3.28 4.40

Big ME 0.93 0.92 0.75 0.83 0.91 1.60 1.73 3.05 3.62 3.03
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Table 17: Time-series regressions of the 25 Fama-French portfolios expected excess
returns on the expected returns of the Fama-French 5-factors (FF5). Regressions are
based on annual subjective excess returns in July of each year between 2002 and 2020. Regres-
sion specification: Ẽt[R

e
i,t+1] = α̃ + β̃mktẼt[R

e
mkt,t+1] + β̃smbẼt[SMBt+1] + β̃hmlẼt[HMLt+1] +

β̃cmaẼt[CMAt+1] + β̃rmwẼt[RMWt+1] + ϵ̃t+1 with average adj.R2 of portfolios 86%.

Lo BM BM2 BM3 BM4 Hi BM Lo BM BM2 BM3 BM4 Hi BM
α̃ t(α̃)

Small 15.31 3.85 3.66 0.88 6.45 1.77 0.52 0.93 0.25 0.81
ME2 1.71 -1.31 -2.59 -0.53 -0.34 0.43 -0.50 -0.92 -0.21 -0.13
ME3 -4.77 -0.1 -3.53 -0.15 -2.61 -3.64 -0.06 -1.98 -0.06 -0.94
ME4 -11.31 -4.73 -1.49 3.38 -2.34 -0.46 -3.58 -0.24 0.95 -0.47

Big ME -0.55 2.86 6.83 3.03 -0.93 -0.39 1.36 1.86 0.70 -0.28

β̃mkt t(β̃mkt)
Small 1.10 1.13 1.17 1.21 0.72 2.60 3.13 6.04 7.06 1.85
ME2 0.84 0.97 1.03 0.92 0.86 4.30 7.50 7.40 7.41 6.77
ME3 1.05 0.83 1.01 0.88 0.93 16.34 9.64 11.46 7.48 6.81
ME4 2.04 1.09 1.21 0.63 0.83 1.70 16.73 3.96 3.56 3.39

Big ME 0.94 0.85 0.69 1.05 1.16 13.61 8.21 3.82 4.93 7.20

β̃smb t(β̃smb)
Small 3.97 3.85 2.50 1.50 2.22 7.91 9.04 11.00 7.41 4.80
ME2 1.34 0.90 0.59 0.40 0.74 5.82 5.87 3.57 2.74 4.97
ME3 0.62 0.26 0.43 0.42 0.82 8.19 2.57 4.20 3.02 5.07
ME4 0.46 0.18 0.02 0.28 1.13 0.33 2.34 0.05 1.33 3.91

Big ME -0.12 -0.23 -0.19 -0.30 0.44 -1.52 -1.88 -0.90 -1.20 2.30

β̃hml t(β̃hml)
Small -0.18 0.42 0.74 0.91 0.18 -0.32 0.91 2.98 4.11 0.36
ME2 -0.19 0.16 -0.00 0.43 0.61 -0.77 0.99 -0.02 2.66 3.74
ME3 -0.42 -0.05 0.01 0.15 0.78 -5.10 -0.46 0.11 0.98 4.40
ME4 -0.96 -0.06 0.89 0.14 0.70 -0.62 -0.71 2.27 0.61 2.21

Big ME -0.37 0.08 0.39 1.04 0.81 -4.17 0.59 1.66 3.77 3.90

β̃cma t(β̃cma)
Small 0.49 -1.30 -0.19 -0.91 1.76 0.74 -2.30 -0.62 -3.40 2.87
ME2 -0.30 -0.33 -0.03 -0.12 -0.21 -1.00 -1.62 -0.14 -0.64 -1.06
ME3 -0.08 0.08 -0.08 0.32 -0.02 -0.75 0.57 -0.60 1.72 -0.11
ME4 1.71 -0.20 -0.42 0.33 -0.40 0.91 -1.99 -0.88 1.21 -1.06

Big ME -0.11 0.03 0.20 -0.48 -0.23 -0.97 0.16 0.70 -1.43 -0.91

β̃rmw t(β̃rmw)
Small 0.13 0.93 0.26 0.26 -0.62 0.32 2.60 1.36 1.55 -1.59
ME2 -0.07 0.15 0.23 0.10 0.36 -0.39 1.15 1.65 0.81 2.83
ME3 -0.15 -0.04 0.29 0.41 -0.39 -2.40 -0.44 3.27 3.51 -2.86
ME4 2.95 0.22 -0.18 0.26 -0.30 2.47 3.36 -0.58 1.46 -1.23

Big ME -0.24 -0.09 0.19 -0.08 -0.28 -3.46 -0.89 1.04 -0.38 -1.75
Adj.R2 s(e)
Small 0.89 0.85 0.95 0.91 0.89 7.55 6.41 3.43 3.05 6.95
ME2 0.82 0.90 0.88 0.90 0.90 3.46 2.30 2.48 2.21 2.24
ME3 0.98 0.94 0.94 0.91 0.95 1.15 1.53 1.56 2.08 2.42
ME4 0.25 0.97 0.72 0.72 0.81 21.37 1.15 5.41 3.12 4.34

Big ME 0.96 0.91 0.73 0.81 0.92 1.23 1.84 3.20 3.80 2.87

60



Table 18: Sell-side Analysts’ Recommendations. This table provides the results of the time
series regressions of aggregate sell-side analysts’ recommendations on the most recent quarter excess
return of the S&P500 (Re

t−3,t) and the log-price dividend ratio (pdt). SRm,t is the S&P500 value-
weighted average of IBES consensus mean sell-side analysts’ stock level recommendations. Small-
sample adjusted Newey-West standard errors with 4 quarter lags are shown in parentheses. *: 10%
significance; **: 5% significance; ***: 1% significance. Notice that forecasting regressions with
persistent regressors may yield biased coefficients in small samples (Stambaugh (1999)): adjusting
for this does not change the results significantly (not showed below).

Regression specification: Yt = ξc + ξr R
e
t−3,t + ξpd pdt + ϵt

Yt ξc ξr ξpd Adj.R2 Sample
SRm,t 0.49 -0.16** 0.07 0.02 Q2 2002- Q4 2020

(0.25) (0.07) (0.07)

61



A Appendix: Alternative IBES Expected Return Con-

struction

In this Section, the main time-series and cross-sectional tests are repeated for IBES total

return expectations constructed by normalising price targets and one-year dividend expecta-

tions by the price at the time the IBES consensus forecasts are formed. Expected returns at

the single stock level are aggregated at the S&P500 level by weighting the forecasts by the

market capitalizations at the time the consensus is formed. Valuation ratios and metrics at

the time the consensus forecasts are created (or the closest date before that date) are used

in the tests. Table A1 illustrates the results, which are similar to those presented in Tables

4, 7, 8, 10 and 11.

[Table A1 here]

Tables A2 and A3 show the results when repeating the first-stage Fama-MacBeth pro-

cedure described in Sections 3.2.2 and 5.2 under the alternative subjective expected returns

construction. Similarly to previous results, CAPM/FF3/FF5 models fit the cross-section of

subjective returns expectations well.

[Tables A2 and A3 here]

B Appendix: Additional SML Plots

Figures B1 and B2 show the SML when realised excess returns are regressed on CFOs and

sell-side analysts’ risk premia expectations. The subjective expectations are not able to

explain the cross-sectional variation of Fama-French 25 book-to-market sorted portfolios.

[Figures B1 and B2 here]

C Appendix: New Factors?

Given the results from Section 3.2.2, one might wonder whether the expected factor returns

constructed using IBES surveys are also able to explain realised excess returns and thus
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represent a new set of ‘factors’. I therefore run simple time-series predictive regressions with

realised excess returns of the 25 Fama-French book-to-market sorted portfolios as dependent

variables and expected factor returns as independent variables:

Re
i,t+1 = α + βẼt [RFactors,t+1] + ϵt+1 (17)

where β is a vector of slope coefficients for each expected return factors, and Ẽt [RFactors,t+1]

is a matrix with all the time-series of expected return factors. Tables C1 and C2 show the

results: the subjective expected market excess return has no explanatory power (average

adjusted R2 is negative); adding subjective expected size and value risk factors leads to

a small increase in pricing ability (average adjusted R2 increases to 19%). Finally, the

subjective investment and profitability factors display an increase in pricing ability (average

adjusted R2 increases to 31%). The takeaway is that some of these subjective expected

risk factors may have some pricing ability, and they could still turn out to be useful when

used in conjunction with other factors. To check whether these expected return factors

have additional information, I run spanning regressions in the spirit of Barillas & Shanken

(2017) and Barillas & Shanken (2018). Table C3 shows the result of spanning regressions

of subjective expected factor returns on the realised or the remaining subjective expected

factor returns. The results are mixed as the standard Fama-French 5 factor model do not

seem to span the subjective expected factor returns counterparts: all αs are statistically

significant at the 10% level with the exception of the expected RMW factor which however

has a low adjusted R2. When running spanning tests amongst subjective expected factors,

they all display insignificant intercept with the exception of the subjective expected HML

factor which, however, has a very low R2. The evidence seems to suggest that the subjective

Fama-French factors are not spanned by the combinations of the other subjective factors or

by the combinations of the realised versions of the Fama-French factors.

[Tables C1 through C3 here]
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Figure B1: Security market line (SML) and CFO expectations. The figure shows average
one-year realised excess returns (E[Re]) of the Fama-French 25 (FF25) portfolios against their CFO
expectation based CAPM beta (βCFO). βCFOs are estimated by running time-series regressions
of realised one-year excess returns of each FF25 portfolio on one-year subjective market excess
returns - from the GH survey - (Re

i,t+1 = αi + βCFO,iẼGH,t[R
e
m,t+1] + ϵt+1), in July of each year

between 2002 and 2020. The green line is the empirical SML and it is the best-fit line across
all the FF25 portfolios. Finally, the red line represents the theoretical SML where the slope is
the sample average subjective GH expected excess market return and the intercept is the sample
average one-year Treasury yield.
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Figure B2: Security market line (SML) and IBES expectations. The figure shows average
one-year realised excess returns (E[Re]) of the Fama-French 25 (FF25) portfolios against their IBES
expectation based CAPM beta (βIBES). βIBESs are estimated by running time-series regressions
of realised one-year excess returns of each FF25 portfolio on one-year subjective market excess
returns - from the IBES - (Re

i,t+1 = αi + βIBES,iẼIBES,t[R
e
m,t+1] + ϵt+1), in July of each year

between 2002 and 2020. The green line is the empirical SML and it is the best-fit line across all the
FF25 portfolios. Finally, the red line represents the theoretical SML where the slope is the sample
average subjective IBES expected excess market return and the intercept is the sample average
one-year Treasury yield.
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Table A1: Main time-series results for alternative IBES subjective return construction.
The tables below report the results of the main tests when IBES total return expectations are
constructed by normalising price targets and one-year dividend expectations by the price at the time
the consensus forecasts are calculated by IBES (this is denoted by IBES∗ below). The aggregation
at the S&P500 level is achieved by using market capitalizations at the time the consensus is formed.
Valuation ratios/measures are also taken at the time the consensus is created or at the closest time
possible before that date. Panel A shows the time-series regression results of IBES∗ subjective risk
premia on past 12-month returns of the CRSP value-weighted index of the S&P500 universe, in
excess of the risk-free rate (Re

t−1,t) and log price-dividend ratio (pdt) - in the spirit of Nagel &
Xu (2022), all predictor variables are standardized to have unit variance and slope coefficients are
multiplied by 100 (this is to allow comparison between the β). Panel B shows equity risk premia
predictability regressions based on IBES∗ subjective risk premia. Panel C shows the correlation of
IBES∗ subjective risk premia with model-based measures of expected risk premium. Panel D shows
the variance decomposition of the price-dividend ratio. CF , DR and LT are defined in equation
(13): the methodology is identical to the one described in Table 7. Small-sample adjusted Newey-
West standard errors with 4 quarter lags are shown in parentheses for Panels A and B. Panel C
displays p-values in the parentheses. *: 10% significance; **: 5% significance; ***: 1% significance.

Panel A Regression specification: Yt = γ0 + γ1 Re
t−1,t + γ2 pdt + ϵt

Yt Intercept Re
t−12,t pdt Adj.R2 Sample

ẼIBES∗,t[R
e
t,t+12] 15.82*** -3.08*** 0.16 Q2 2002 - Q4 2020

(1.04) (1.09)

ẼIBES∗,t[R
e
t,t+12] 117.20*** -3.56*** 0.21 Q2 2002 - Q4 2020

(30.15) (1.05)

ẼIBES∗,t[R
e
t,t+12] 92.90** -1.72 -2.69* 0.24 Q2 2002 - Q4 2020

(43.94) (1.72) (1.54)

Panel B Regression specification: Re
t,t+1 = α + β1Xt + β212007,2008 + ϵt+1

Xt α β1 β2 Adj.R2 Sample

ẼIBES∗,t[R
e
t,t+12] 0.02 0.63** 0.07 Q2 2002 - Q4 2020

(0.02) (0.25)

ẼIBES∗,t[R
e
t,t+12] 0.02 0.87*** -0.34*** 0.49 Q2 2002 - Q4 2020

(0.04) (0.25) (0.06)

Panel C Correlation Results

Correlation pd cay VRP VIX2 Sample
IBES∗ -0.47*** 0.30*** 0.37*** 0.85*** Q2 2002 - Q4 2020

(0.00) (0.01) (0.00) (0.00)

Panel D Variance decomposition of pd

Channel β t(β) Adj.R2(%) σ(Xβ)(%) Sample
CF 0.36 5.78 52.32 4.99 Q2 2002 - Q4 2018

DRIBES∗ 0.14 2.31 10.80 1.91 Q2 2002 - Q4 2018
LTIBES∗ 0.51 6.30 50.67 6.99 Q2 2002 - Q4 2018
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Table A2: Time series regressions of the 25 Fama-French portfolios subjective expected
excess returns on the subjective expected excess market return (CAPM) or on the
subjective expected returns of the Fama-French 3-factors (FF3) based on alternative
IBES subjective return construction. The tables below rely on IBES total return expectations
constructed by normalising price targets and one-year dividend expectations by the price at the
time the consensus forecasts are calculated by IBES. Regressions are based on annual subjective
excess returns in July of each year between 2002 and 2020. Panel A reports results from the CAPM
specification: Ẽt[R

e
i,t+1] = α̃+ β̃mktẼt[R

e
mkt,t+1]+ ϵ̃t with average adj.R2 of portfolios 73%; Panel B

reports results from the FF3 specification: Ẽt[R
e
i,t+1] = α̃+ β̃mktẼt[R

e
mkt,t+1] + β̃smbẼt[SMBt+1] +

β̃hmlẼt[HMLt+1] + ϵ̃t with average adj.R2 of portfolios 87%.

Panel A
Lo BM BM2 BM3 BM4 Hi BM Lo BM BM2 BM3 BM4 Hi BM

α̃ t(α̃)
Small 20.24 24.3 7.53 9.87 -5.39 1.50 2.35 0.91 2.10 -0.52
ME2 4.86 1.96 0.64 0.11 -0.74 1.05 0.88 0.36 0.05 -0.20
ME3 -0.71 -1.84 0.25 0.12 -6.73 -0.51 -1.48 0.20 0.06 -1.93
ME4 -2.07 -0.65 -1.00 -0.94 -30.71 -0.64 -0.85 -0.34 -0.44 -2.12

Big ME 0.39 -0.08 3.68 3.13 -2.10 0.43 -0.13 3.76 1.41 -1.27

β̃mkt t(β̃mkt)
Small 2.40 1.06 1.76 1.07 2.41 2.90 2.38 4.22 6.43 3.43
ME2 1.26 1.10 1.02 0.97 1.14 4.59 11.91 14.73 13.57 5.89
ME3 1.12 1.08 0.89 0.97 1.53 14.00 15.54 17.84 14.43 7.97
ME4 1.34 0.89 1.12 0.99 3.49 3.82 19.05 4.69 7.44 3.14

Big ME 0.88 0.91 0.74 0.86 1.34 23.75 25.92 15.42 4.73 17.81
Adj.R2 s(e)
Small 0.50 0.19 0.58 0.54 0.65 22.54 18.63 14.06 9.25 16.64
ME2 0.64 0.8 0.84 0.83 0.70 8.92 5.22 4.28 4.16 7.05
ME3 0.87 0.92 0.9 0.85 0.81 4.15 2.99 2.91 3.91 7.01
ME4 0.21 0.97 0.68 0.82 0.67 22.75 1.61 7.24 4.38 22.93

Big ME 0.92 0.96 0.85 0.67 0.90 2.47 1.88 2.90 5.68 4.26

Panel B
Lo BM BM2 BM3 BM4 Hi BM Lo BM BM2 BM3 BM4 Hi BM

α̃ t(α̃)
Small 15.36 22.46 9.40 10.39 -1.43 3.31 4.71 4.09 3.96 -0.43
ME2 0.07 -1.62 -1.70 0.51 -0.20 0.05 -1.46 -1.18 0.41 -0.15
ME3 -5.11 -4.17 -0.62 -0.21 -3.64 -8.11 -6.74 -0.4 -0.14 -2.96
ME4 -2.97 -1.37 1.21 -1.06 -23.51 -0.90 -1.53 0.49 -0.61 -2.73

Big ME -1.50 0.01 5.73 6.94 1.46 -2.21 0.01 5.13 3.24 1.27

β̃mkt t(β̃mkt)
Small 1.33 0.10 0.89 0.57 1.39 4.84 0.35 7.50 2.81 6.48
ME2 0.96 0.95 0.91 0.75 0.73 8.60 13.28 11.53 10.90 9.45
ME3 1.11 1.02 0.81 0.8 1.09 25.16 28.34 9.96 9.84 14.21
ME4 1.43 0.91 1.11 0.81 2.39 4.13 18.20 5.10 9.75 3.83

Big ME 1.00 0.96 0.69 0.77 1.12 23.34 24.60 9.31 4.32 24.36

β̃smb t(β̃smb)
Small 3.41 2.73 2.02 1.22 2.12 7.38 11.82 15.69 5.64 8.45
ME2 1.42 0.86 0.61 0.52 0.99 6.92 8.10 5.88 7.59 7.06
ME3 0.62 0.47 0.34 0.48 0.72 10.16 8.67 5.55 5.07 5.08
ME4 -0.10 0.04 -0.28 0.50 1.89 -0.31 0.94 -0.97 4.59 2.41

Big ME -0.06 -0.13 -0.16 -0.28 0.07 -1.44 -2.19 -1.88 -1.46 0.81

β̃hml t(β̃hml)
Small 0.76 0.95 1.22 0.64 1.60 1.76 3.68 6.97 4.02 8.49
ME2 -0.13 -0.19 -0.10 0.30 0.54 -1.07 -2.33 -0.99 3.64 5.09
ME3 -0.43 -0.16 0.01 0.17 0.83 -9.50 -3.88 0.09 1.29 6.83
ME4 -0.19 -0.10 0.23 0.21 2.02 -0.79 -1.43 1.54 1.22 4.33

Big ME -0.33 -0.05 0.26 0.49 0.61 -7.20 -1.07 3.03 3.06 7.55
Adj.R2 s(e)
Small 0.87 0.81 0.96 0.86 0.93 11.26 9.16 4.22 5.18 7.35
ME2 0.91 0.97 0.93 0.94 0.94 4.39 2.15 2.75 2.47 3.07
ME3 0.98 0.98 0.93 0.92 0.95 1.47 1.42 2.36 2.77 3.51
ME4 0.11 0.97 0.66 0.90 0.80 24.19 1.62 7.45 3.28 17.89

Big ME 0.96 0.96 0.88 0.72 0.95 1.81 1.82 2.63 5.24 2.96
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Table A3: Time-series regressions of the 25 Fama-French portfolios expected excess
returns on the expected returns of the Fama-French 5-factors (FF5) based on alter-
native IBES subjective return construction. The table below relies on IBES total return
expectations constructed by normalising price targets and one-year dividend expectations by the
price at the time the consensus forecasts are calculated by IBES. Regressions are based on annual
subjective excess returns in July of each year between 2002 and 2020. Regression specification:
Ẽt[R

e
i,t+1] = α̃ + β̃mktẼt[R

e
mkt,t+1] + β̃smbẼt[SMBt+1] + β̃hmlẼt[HMLt+1] + β̃cmaẼt[CMAt+1] +

β̃rmwẼt[RMWt+1] + ϵ̃t+1 with average adj.R2 of portfolios 89%.

Lo BM BM2 BM3 BM4 Hi BM Lo BM BM2 BM3 BM4 Hi BM
α̃ t(α̃)

Small 22.55 16.35 9.39 3.96 5.69 2.78 2.21 2.91 1.10 1.07
ME2 2.54 -3.38 -3.62 -2.19 -2.97 0.82 -2.06 -1.72 -1.24 -1.22
ME3 -4.44 -3.22 -3.64 -1.58 -2.10 -4.58 -2.94 -2.61 -0.76 -0.75
ME4 -18.67 -3.74 -3.95 -1.68 -1.27 -1.10 -3.81 -0.69 -0.63 -0.11

Big ME -0.23 0.46 6.14 4.65 0.97 -0.18 0.30 2.78 1.11 0.40

β̃mkt t(β̃mkt)
Small 0.81 0.49 0.89 0.98 0.91 1.63 1.08 4.51 4.48 2.80
ME2 0.76 1.06 1.04 0.93 0.93 4.06 10.55 8.09 8.67 6.25
ME3 1.05 0.95 1.02 0.91 0.97 17.78 14.32 12.0 7.21 5.71
ME4 2.68 1.08 1.44 0.85 0.85 2.59 17.97 4.12 5.20 1.18

Big ME 0.90 0.93 0.66 0.90 1.14 11.14 9.81 4.9 3.52 7.77

β̃smb t(β̃smb)
Small 3.15 2.90 2.00 1.43 1.82 6.40 6.45 10.21 6.55 5.66
ME2 1.33 0.91 0.68 0.62 1.06 7.09 9.09 5.32 5.77 7.19
ME3 0.58 0.43 0.45 0.53 0.65 9.81 6.43 5.34 4.21 3.82
ME4 0.44 0.13 -0.11 0.53 1.06 0.43 2.15 -0.31 3.27 1.47

Big ME -0.11 -0.14 -0.15 -0.19 0.09 -1.33 -1.45 -1.09 -0.75 0.61

β̃hml t(β̃hml)
Small 0.35 0.81 0.93 0.62 1.31 0.61 1.54 4.08 2.46 3.51
ME2 -0.24 -0.22 -0.21 0.21 0.37 -1.12 -1.86 -1.43 1.72 2.15
ME3 -0.42 -0.22 -0.10 -0.00 0.83 -6.11 -2.8 -1.07 -0.01 4.24
ME4 -1.26 -0.11 0.49 0.10 1.93 -1.05 -1.65 1.22 0.54 2.32

Big ME -0.26 -0.04 0.21 0.68 0.69 -2.79 -0.36 1.38 2.32 4.04

β̃cma t(β̃cma)
Small 0.74 -0.82 0.25 -0.79 0.77 0.77 -0.94 0.66 -1.86 1.23
ME2 0.12 -0.29 -0.01 -0.11 -0.03 0.32 -1.49 -0.05 -0.53 -0.09
ME3 -0.15 0.09 -0.01 0.22 -0.09 -1.32 0.68 -0.06 0.91 -0.27
ME4 1.71 -0.15 -1.02 0.10 1.45 0.85 -1.27 -1.52 0.33 1.04

Big ME -0.08 0.05 0.19 -0.63 -0.26 -0.51 0.27 0.73 -1.28 -0.92

β̃rmw t(β̃rmw)
Small -0.77 0.32 0.04 0.43 -0.66 -1.24 0.56 0.15 1.57 -1.63
ME2 -0.34 0.06 0.22 0.28 0.32 -1.44 0.51 1.38 2.11 1.74
ME3 -0.18 -0.10 0.38 0.27 -0.27 -2.48 -1.24 3.57 1.71 -1.28
ME4 2.94 0.24 0.22 0.11 -2.34 2.27 3.26 0.5 0.52 -2.59

Big ME -0.2 -0.04 0.03 0.01 -0.06 -2.01 -0.31 0.18 0.03 -0.34
Adj.R2 s(e)
Small 0.89 0.79 0.96 0.89 0.94 10.31 9.41 4.10 4.58 6.75
ME2 0.93 0.97 0.94 0.95 0.94 3.93 2.09 2.68 2.24 3.10
ME3 0.99 0.98 0.96 0.93 0.95 1.23 1.39 1.77 2.63 3.55
ME4 0.29 0.98 0.68 0.89 0.86 21.57 1.25 7.28 3.39 15.05

Big ME 0.96 0.95 0.86 0.71 0.95 1.69 1.97 2.81 5.32 3.06
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Table C1: Time series regressions 25FF portfolios excess returns on the IBES subjec-
tive expected excess market return (CAPM) or on the subjective expected FF 3-factors
(FF3). Regressions are based on annual excess returns in July of each year between 2002 and 2020.
Panel A reports results from the CAPM specification: Re

i,t+1 = α + βmktẼt[Rmkt−rf,t+1] + ϵt+1

with average adj.R2 of portfolios −3%. Panel B reports results from the FF3 specification:
Re

i,t+1 = α+βmktẼt[Rmkt−rf,t+1]+βsmbẼt[SMBt+1]+βhmlẼt[HMLt+1]+ ϵt+1 with average adj.R2

of portfolios 19%.

Panel A
Lo BM BM2 BM3 BM4 Hi BM Lo BM BM2 BM3 BM4 Hi BM

α t(α)
Small -1.89 4.21 -1.62 2.65 0.70 -0.16 0.41 -0.13 0.21 0.05
ME2 1.24 5.00 -0.21 -2.17 -4.24 0.13 0.42 -0.02 -0.19 -0.31
ME3 -0.54 2.72 -0.62 -2.26 -1.74 -0.05 0.22 -0.06 -0.22 -0.12
ME4 6.64 2.71 4.14 -0.86 3.78 0.60 0.24 0.35 -0.07 0.25

Big ME 10.47 5.47 -1.65 -3.31 2.08 1.11 0.65 -0.19 -0.30 0.25
βmkt t(βmkt)
Small 0.53 0.33 0.57 0.35 0.50 0.86 0.57 0.84 0.55 0.68
ME2 0.58 0.34 0.63 0.63 0.59 0.91 0.46 0.92 0.95 0.77
ME3 0.68 0.53 0.66 0.73 0.52 0.84 0.61 1.01 1.08 0.65
ME4 0.36 0.53 0.29 0.55 0.23 0.46 0.69 0.39 0.72 0.29

Big ME -0.01 0.18 0.59 0.45 0.28 -0.01 0.29 0.98 0.60 0.62
Adj.R2 s(e)
Small -0.03 -0.05 -0.03 -0.05 -0.04 21.04 18.02 20.46 21.82 25.13
ME2 -0.00 -0.04 -0.00 -0.00 -0.03 16.23 17.53 17.66 17.72 22.30
ME3 0.00 -0.02 0.01 0.00 -0.04 18.47 18.41 16.86 19.08 23.50
ME4 -0.04 -0.02 -0.05 -0.02 -0.06 16.76 17.08 19.81 19.47 28.09

Big ME -0.06 -0.05 0.01 -0.04 -0.05 13.23 13.84 14.52 20.68 19.25

Panel B
Lo BM BM2 BM3 BM4 Hi BM Lo BM BM2 BM3 BM4 Hi BM

α t(α)
Small -15.85 -7.62 -13.04 -11.92 -11.46 -0.98 -0.59 -0.97 -0.92 -0.65
ME2 -11.44 -6.90 -15.33 -15.48 -17.46 -1.03 -0.58 -1.63 -1.80 -1.29
ME3 -17.22 -10.20 -18.58 -14.95 -13.74 -1.28 -0.90 -2.92 -1.65 -1.13
ME4 -4.58 -11.91 -18.07 -12.66 -12.76 -0.38 -1.16 -1.59 -1.43 -0.63

Big ME 3.93 -6.68 -14.81 -24.95 -20.52 0.32 -0.77 -1.61 -1.96 -2.20
βmkt t(βmkt)
Small 1.03 0.98 1.4 1.32 1.52 1.32 1.73 2.55 2.5 2.29
ME2 1.18 1.17 1.66 1.60 1.67 1.98 2.07 4.14 4.75 3.07
ME3 1.52 1.47 1.77 1.70 1.69 2.01 2.44 6.56 4.69 4.00
ME4 1.05 1.52 1.57 1.68 1.52 1.57 2.92 3.55 5.07 1.79

Big ME 0.28 0.98 1.45 1.78 1.43 0.39 2.49 3.56 3.86 2.63
βsmb t(βsmb)
Small 0.34 -0.59 -1.32 -1.31 -1.89 0.43 -0.88 -1.98 -1.90 -2.67
ME2 -0.24 -1.25 -1.46 -1.53 -1.98 -0.35 -2.37 -3.30 -3.01 -3.34
ME3 -0.51 -1.49 -1.31 -1.63 -2.50 -0.75 -2.14 -2.82 -3.17 -3.98
ME4 -0.81 -1.38 -1.28 -2.37 -2.25 -1.24 -2.46 -2.64 -5.57 -2.93

Big ME -0.03 -1.10 -1.14 -1.57 -0.74 -0.05 -2.40 -3.11 -4.31 -1.39
βhml t(βhml)
Small -1.80 -1.86 -2.07 -2.51 -2.38 -1.59 -2.02 -2.38 -2.28 -1.77
ME2 -1.84 -2.11 -2.64 -2.41 -2.56 -1.69 -1.96 -2.67 -2.69 -2.33
ME3 -2.50 -2.34 -2.97 -2.36 -2.59 -1.96 -1.88 -3.35 -2.11 -2.38
ME4 -1.85 -2.54 -3.55 -2.51 -3.12 -1.34 -2.37 -3.03 -2.53 -1.98

Big ME -0.92 -2.09 -2.25 -3.58 -3.40 -0.75 -1.97 -2.08 -2.32 -4.84
Adj.R2 s(e)
Small -0.08 -0.03 0.08 0.08 0.09 21.55 17.88 19.42 20.46 23.49
ME2 0.02 0.14 0.32 0.29 0.22 16.07 15.90 14.52 14.90 19.43
ME3 0.10 0.22 0.41 0.25 0.30 17.52 16.04 12.97 16.53 19.30
ME4 0.04 0.30 0.33 0.46 0.14 16.14 14.18 15.78 14.08 25.30

Big ME -0.15 0.28 0.33 0.36 0.24 13.78 11.46 11.92 16.19 16.37
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Table C2: Time series regressions 25FF portfolios excess returns on the IBES sub-
jective expected Fama-French 5-factors (FF5). Regression are based on annual excess
returns in July of each year between 2002 and 2020. Regression specification: Re

i,t+1 = α +

βmktẼt[Rmkt−rf,t+1]+βsmbẼt[SMBt+1]+βhmlẼt[HMLt+1]+βcmaẼt[CMAt+1]+βrmwẼt[RMWt+1]+
ϵt+1 with average adj.R2 of portfolios 31%.

Lo BM BM2 BM3 BM4 Hi BM Lo BM BM2 BM3 BM4 Hi BM
α t(α)

Small -19.22 -10.83 -17.75 -15.50 -8.84 -0.72 -0.50 -0.72 -0.60 -0.31
ME2 -20.95 -3.73 -10.59 -16.20 -15.99 -1.12 -0.20 -0.65 -0.89 -0.69
ME3 -18.22 -13.23 -19.11 -13.16 -13.11 -0.89 -0.84 -1.27 -0.73 -0.56
ME4 -5.20 -10.78 -12.70 -9.09 -11.05 -0.33 -0.74 -0.72 -0.61 -0.37

Big ME -2.38 -13.23 -12.05 -22.19 -25.82 -0.17 -1.34 -1.07 -1.39 -1.31
βmkt t(βmkt)
Small 1.25 1.21 1.69 1.57 1.51 0.95 1.13 1.38 1.23 1.07
ME2 1.69 1.10 1.52 1.71 1.71 1.83 1.19 1.89 1.89 1.50
ME3 1.64 1.73 1.87 1.72 1.77 1.62 2.22 2.51 1.94 1.52
ME4 1.17 1.55 1.40 1.62 1.59 1.50 2.16 1.61 2.20 1.09

Big ME 0.64 1.38 1.41 1.77 1.76 0.94 2.81 2.53 2.24 1.80
βsmb t(βsmb)
Small 1.20 0.13 -0.73 -0.74 -1.34 0.81 0.11 -0.53 -0.51 -0.84
ME2 0.78 -0.79 -1.07 -1.11 -1.41 0.75 -0.76 -1.18 -1.09 -1.10
ME3 0.27 -0.49 -0.81 -0.99 -2.05 0.24 -0.56 -0.97 -0.99 -1.57
ME4 0.16 -0.68 -0.83 -1.94 -1.47 0.18 -0.84 -0.85 -2.35 -0.89

Big ME 1.04 -0.14 -0.58 -0.86 -0.02 1.35 -0.25 -0.93 -0.97 -0.02
βhml t(βhml)
Small -1.80 -1.77 -1.96 -2.38 -2.12 -1.07 -1.29 -1.25 -1.45 -1.16
ME2 -1.86 -1.91 -2.40 -2.24 -2.31 -1.57 -1.61 -2.33 -1.93 -1.58
ME3 -2.40 -2.16 -2.81 -2.12 -2.31 -1.85 -2.16 -2.95 -1.86 -1.54
ME4 -1.70 -2.33 -3.31 -2.20 -2.81 -1.69 -2.53 -2.96 -2.33 -1.50

Big ME -0.91 -1.99 -2.05 -3.33 -3.33 -1.03 -3.17 -2.88 -3.28 -2.66
βcma t(βcma)
Small 0.43 0.33 -0.02 0.14 1.01 0.22 0.21 -0.01 0.07 0.47
ME2 -0.27 0.96 1.12 0.37 0.86 -0.19 0.68 0.93 0.27 0.50
ME3 0.69 0.65 0.48 0.97 0.62 0.45 0.56 0.43 0.73 0.35
ME4 0.95 0.92 1.27 1.01 1.15 0.80 0.84 0.96 0.90 0.52

Big ME 0.22 0.10 1.01 1.20 0.04 0.22 0.13 1.21 1.01 0.03
βrmw t(βrmw)
Small 1.70 1.62 1.27 1.41 2.03 1.35 1.58 1.09 1.15 1.50
ME2 1.64 1.63 1.70 1.28 1.95 1.85 1.84 2.21 1.47 1.79
ME3 1.85 2.43 1.43 2.09 1.71 1.91 3.27 2.00 2.45 1.53
ME4 2.41 2.03 1.84 1.87 2.64 3.20 2.95 2.21 2.65 1.88

Big ME 1.95 1.93 1.85 2.37 1.49 2.98 4.11 3.48 3.13 1.59
Adj.R2 s(e)
Small -0.09 0.00 0.02 0.03 0.10 21.66 17.58 20.04 20.98 23.28
ME2 0.12 0.21 0.44 0.29 0.27 15.17 15.21 13.20 14.86 18.72
ME3 0.19 0.51 0.48 0.42 0.31 16.63 12.76 12.22 14.61 19.13
ME4 0.38 0.51 0.45 0.60 0.23 12.90 11.79 14.32 12.10 24.00

Big ME 0.23 0.64 0.61 0.59 0.27 11.24 8.05 9.12 12.99 16.03
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Table C3: Spanning regressions of IBES subjective expected return factors. This
table provides the results of time-series spanning regressions of subjective expected factor one-year
returns in July of each year between 2002 and 2020. The first and second columns in both Panel
A and Panel B represent the dependent variable and intercept value of each spanning regression.
The remaining columns are the independent variables of the regressions: in Panel A, only one-year
realised Fama-French factor returns are used to span the subjective expected factor returns; in
Panel B, only subjective expected Fama-French factor returns are used. *: 10% significance; **:
5% significance; ***: 1% significance.

Panel A
α Mkt-Rf SMB HML CMA RMW Adj.R2

Ẽ [Mkt−Rf ] 18.90*** -0.46 0.47 0.95*** -0.22 0.46
(2.00) (0.29) (0.32) (0.33) (0.26)

Ẽ [SMB] 10.39*** -0.33 0.24 0.62** -0.26 0.23
(3.67) (0.21) (0.29) (0.31) (0.21)

Ẽ [HML] -7.37** 0.28 0.20 -0.01 0.07 0.05
(3.72) (0.19) (0.24) (0.32) (0.20)

Ẽ [CMA] -8.38*** 0.39*** 0.35** -0.01 -0.09 0.51
(2.66) (0.14) (0.18) (0.22) (0.17)

Ẽ [RMW ] 3.50 -0.23 -0.37 0.12 -0.21 0.14
(5.39) (0.26) (0.30) (0.35) (0.42)

Panel B

α Ẽ [Mkt−Rf ] Ẽ [SMB] Ẽ [HML] Ẽ [CMA] Ẽ [RMW ] Adj.R2

Ẽ [Mkt−Rf ] -12.34 1.29** 0.14 -1.89** 0.44 1.99*** 0.49
(12.25) (0.61) (0.68) (0.78) (0.92) (0.58)

Ẽ [SMB] -2.62 0.34 -0.57 0.09 -0.19 -0.4 -0.10
(8.84) (0.44) (0.49) (0.56) (0.66) (0.42)

Ẽ [HML] -6.92 0.50 -1.34* -1.06 0.30 0.03
(12.39) (0.61) (0.69) (0.79) (0.93) (0.59)

Ẽ [CMA] -6.81 0.50* -0.31 0.10 0.06 0.30 0.30
(5.25) (0.26) (0.29) (0.33) (0.39) (0.25)

Ẽ [RMW ] 4.01 -0.06 -0.41 0.33 -0.73 -0.43 0.19
(6.01) (0.30) (0.33) (0.38) (0.45) (0.28)

.
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